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Ferromagnetism in Hubbard Models

Hal Tasaki*
Department of Physics, Gakushuin University, Mejiro, Toshima ku, -Tokyo 171, Japan

(Received 7 April 1995)

We present the first rigorous examples of nonsingular Hubbard models which exhibit ferromagnetism
at zero temperature. The models are defined in arbitrary dimensions, and are characterized by finite-

range hoppings, dispersive bands, and finite on-site Coulomb interaction U. The picture, which goes
back to Heisenberg, that sufficiently large Coulomb interaction can revert Pauli paramagnetism into
ferromagnetism has been confirmed in concrete examples.

PACS numbers: 75.10.Lp

The origin of ferromagnetism has been a mystery in
physical science for quite a long time [1]. It was Heisen-
berg [2] who first realized that ferromagnetism is intrin-
sically a quantum many-body effect, and proposed the
scenario that spin-independent Coulomb interaction and
the Pauli exclusion principle generate "exchange interac-
tion" between electronic spins. One of the motivations
to study the so-called Hubbard model has been to estab-
lish and understand the generation of ferromagnetism in
simplified situations [3,4]. Unfortunately, rigorous exam-
ples of ferromagnetism (or ferrimagnetism) in the Hubbard
models have been limited to singular models which have
infinitely large Coulomb interaction (Nagaoka-Thouless
ferromagnetism [5]), or in which magnetization is sup-
ported by a dispersionless band (Lieb's ferrimagnetism [6],
and fiatband ferromagnetism due to Mielke [7] and the
present author [8]). In [9,10], local stability of ferromag-
netism in a generic family of Hubbard models with nearly
Hat bands was proved.

In the present Letter, we treat a class of Hubbard
models in arbitrary dimensions, which are nonsingular in
the sense that they have finite-range hoppings, dispersive
(single-electron) bands, and finite Coulomb interaction
U. We prove that the models exhibit ferromagnetism in
their ground states provided that U is sufficiently large.
We recall that Hubbard models with dispersive bands
(like ours) exhibit Pauli paramagnetism when U = 0, and
remain nonferromagnetic for sufficiently small U. The
appearance of ferromagnetism is a purely nonperturbative
phenomenon.

As far as we know, this is the first time that the
existence of ferromagnetism has been established in
nonsingular itinerant electron systems. We stress that our
examples finally provide the definite affirmative answer
to the long-standing fundamental problem: whether spin-
independent Coulomb interaction can be the origin of
ferromagnetism in itinerant electron systems [11]. See
[8,10,12] for further discussions of ferromagnetism in the
Hubbard models.

In order to simplify the discussion, we describe our
results in one-dimensional models. We discuss models
in higher dimensions at the end of the Letter. Let W

be an arbitrary integer, and let A be the set of integers
x with ~x~ ~ N. We identify x = —N and x = N to
regard A as a periodic chain with 2N sites. We denote
by S and 6 the subsets of A, consisting of even and
odd sites (integers), respectively. As usual, we denote by
c~, c, and n the creation, the annihilation, and
the number operators, respectively, for an electron at site
x E A with spin o. ='t, $.

We consider the standard Hubbard Hamiltonian

H: tzyc&~cy~+UpnxJnxlt
x,y EA xEA
~=T,l

where t +~ =t+] =t' for any xEA, t +2=
t„+2, = t if x E 'E, t, ,+2 = t, +2, = —s if x E 6,
and t, , = V if x E 6. The remaining elements of t, y

vanish. See Fig. 1. Here s, t, and U are positive param-
eters [13]. The parameters t' and V are determined by
s, t, and another positive parameter A as t' = A(s + t)
and V = (A —2)(s + t). Our main theorem applies to
the case A = ~2, where we have V = 0. We consider
the Hilbert space with W electrons in the system. This
corresponds to the quarter filling of all the bands, or the
half filling of the lower band.

If we consider the single-electron problem correspond-
ing to the Hamiltonian (1), we find that the model has two
bands with dispersion relations ei(k) = —2s cos2k—
2(s + t) and ez(k) = 2t cos2k + Az(s + t) with ~k~

7r/2 Note that b. oth bands have perfect cosine disper-
sions, which is a special feature of the present model [14].
There is an energy gap A2(s + t) between the two bands.

FIG. 1 The one-dimensional lattice and the hopping matrix
elements. There are hoppings to nearest and next-nearest
neighbors, and on-site potential.
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For a = 1, 2, 3, we define the total spin operators by

SIof g ~Q g =1 I c (p /2), c, , where p
are the Pauli matrices, and denote the eigenvalues of
(S„,) = g l (St„t ) as Sto, (5)ot + 1). The maximum3 (~) 2

possible value of Stot is 5 „=—N/2.
Let bI, be the creation operator corresponding to

the single-electron eigenstate with the energy et(k). Let
4„, be the state with no electrons. The state 4f, , =
(gk bk t)tI&„„(where the lower band is fully filled by up-
"'

t

spin electrons) has the lowest energy among the states
with Stpt S,„. It is easy to observe that 4fg 0 is an
eigenstate of H with the energy Ep = —2(s + t)N. A
simple variational calculation shows that 4f, , cannot be
a ground state of H (and hence the true ground state has

5„, ~ S,„) if U ( 4s. The main result of the present
Letter is the following.

Theorem I.—Suppose A ) A, = [(2 + ~5)'/
2]'/ = 0.241. If t/s and U/s are sufficiently large, the
ground states of the Hamiltonian (1) have St„t = 5,„,
and are nondegenerate apart from the (2S„, + 1)-fold
spin degeneracy. tIir, , is one of the ground states. How
large the parameters should be can be determined by
diagonalizing a Hubbard model on a five-site chain (see
Fig. 2).

The present models reduce to the Hatband models
studied in [8] if we set s = 0. Therefore we can
regard theorem I as a confirmation in special cases
of the previous conjecture [8—10,15] that the Ilatband
ferromagnetism is stable under perturbations. Moreover,
the strong result about the spin-wave excitation proved in

[9,10] also applies to the preset models.
Theorem II.—Suppose that the model parameters sat-

isfy A ~ A3, s/t ~ pp, and K2At ~ U ~ A3A s, where
A3 po K2 and A3 are positive constants that appear in
[10]. Then the spin-wave excitation energy Esw(k) [i.e.,

the lowest energy among the states with (N —1) up-spin
electrons and one down-spin electron, and with crystal

t/s
20

10

~!f8 'tR1!
3 l 8 8 \ I I ill 8 mI

n
5 8!I$

' IIB)(

IRSIIIB

I II

50

FIG. 2 When A = ~2, theorem I is applicable for t/s and
U/s in the shaded region. The existence of ferromagnetism
is established, for example, if t ~ 4.5s when U = 50s, or
t ~ 2.6s when U = 100s. Though the plot was obtained
from a numerical calculation in a five-site Hubbard model, our
theorem guarantees that the model with arbitrary lattice size
exhibits ferromagnetism.

—s ~a a~~+Un Tn
~=T,l

(r+ — ax+ r, o- ax+ r, o- +
r +i k ~=1,l=

U
nx+ r,l nx+ r,t

(4)

Since [h„h,+2] 4 0, it is impossible to diagonalize all h

simultaneously.
Lemma Suppose .—A ~ A„and t/s and U/s are

sufficiently large. Then the minimum eigenvalue of h

(regarded as an operator on the whole Hilbert space) is
—(A + 2)s. In any of the corresponding eigenstates,
there are one, two, or three electrons in the sublattice
(x —2, x —1, x, x + 1, x + 2), and these electrons are
coupled ferromagnetically Any eigenstate .tIi with the
eigenvalue —(A + 2)s can be written in the form,

4 = a. TC& + a. le2,t (5)
with some states 4i and 42, and satisfies

c~+ l,lcx+ ],Tc —0 .

momentum k] of the Hubbard model (1) satisfies

4U 4U
F2 (sink) ~ Esw(k) —Ep ~ Ft (sink), (2)

A4 A4

where Eo is the ground state energy, and Fi and F2 are
constants such that F~ = F2 = 1 if A && 1, As && t, and
U )) A2s. (See [10] for details and a proof. )

In the parameter region where both theorems I and
II are applicable, we have an ideal situation where the
global stability of ferromagnetism as well as the appear-
ance of "healthy" low-lying excited states are rigorously
established. We have derived rigorously a ferromagnetic
system with (effective) exchange interaction 1 = 2U/A,
starting from the Hubbard models for itinerant electrons.

It is quite likely that the present models represent
(Mott-Hubbard) insulators. We expect that the same
models with smaller electron numbers describe metallic
ferromagnetism [16], but have no rigorous results in this
direction (except for those in the Ilatband models [8]).

Proof of theorem I.—For x E A and tT ='t, $, we
define a, = A c, —(—1)'(c, i ~ + c,+i ~), which
correspond to the strictly localized basis states used in
[8—10]. The anticommutator (at, aY ) is A2 + 2 if
x = y, 1 if ~x

—
y~

= 2, and vanishing otherwise. By
using these operators, Hamiltonian (1) can be written in a
compact manner as

H=(As —2t)N —s g at a
xEE
~=T,l

+t g a a +Urn ln
xE6 xEA
~=T,l

in the sector with N electrons. We further rewrite it as
H = (Azs —2t)N + g ~& h with the local Hamilton-
ian defined as
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We prove the lemma in the next part. In what
follows, we assume that the model parameters satisfy the
conditions in the lemma. The basic strategy of the proof
of theorem I is to extend the local ferromagnetism found
above into a global ferromagnetism. Special characters of
the present model make such an extension possible.

The lemma implies h, ~ —(A + 2)s, and
hence H ~ (A s —2t)N —N(A + 2)s = —2(s +
t)N = Ep Thi.s proves that ~I?t, , (which has the
eigenenergy Ep) is a ground state.

To show the uniqueness of the ground states, we as-
sume iIi is a ground state, i.e., Hei = Ep@ The.n we
have h, C& = —(A + 2)s iIi for each x E X', and iIi is
characterized by the lemma. We note that the collection
of states (P ~z a, t) (P Eii a, &)iI~„, with arbitrary sub-t t

sets A, B C A such that ~A] + (B( = N forms a (com-
plete) basis of the N-electron Hilbert space. Imagine that
we expand iIi using this basis. Since (5) holds for any
x E 'E, iIi must be written in the form

{7)

e2 = 0, and two more with es = (A + 1)t/2 and
e4 = (A + 3)t/2. We denote the corresponding cre-
ation operators as d; = ~ ~~, px c . It is crucial to

note that ap = (A2 + 2)'lzdp
Since the local Hamiltonian hp conserves the number of

electrons in Ap, we can examine its minimum eigenvalue
in each sector with a fixed number of electrons in Ap.
When there are no electrons in Ap, the only possible
eigenvalue of hp is 0 ) —(A2 + 2)s. Let f„and e„
be the minimum eigenvalues of hp in the sectors with n
electrons in Ap with the total spin (of the n electrons)

(n) (n)
S«& = n/2 and S«& ( n/2, respectively.

Notmg that f„=g"
p em, we find fi = f2 =

f3 = —(A + 2)s and f„~ —(A + 2)s for n ~ 4.
Since the corresponding ferromagnetic eigenstates are
(g" p d,„t)~I~ (where iI? is an arbitrary state with no
electrons in Ap) or their SU(2) rotations, they are written
in the desired form (5), and satisfy (6). Therefore, in
order to prove the lemma, it suffices to show that

e„) —(A + 2)s for any n = 2, 3, . . . , 8.
where o. = [o.(x)] ~~ is a spin configuration with
cr(x) =f, $, and p(o.) is a coefficient. Unlike in the fiat-
band models [8], a state of the form (7) is not necessarily
an eigenstate of the hopping part of H.

By examining how c,+i tc +it acts on (7), the condi-
tion (6) reduces to

Since condition (9) only involves eigenvalues of a finite
system, it can be checked by numerically diagonalizing
finite dimensional matrices for given values of A, s, t, and
U. We can thus construct a computer aided proof that
our Hubbard model exhibits ferromagnetism. Figure 2
summarizes the result of a preliminary analysis in this
direction.

Let us prove (9) in a range of parameters without using
computers. Let e2 (e2') be the minimum eigenvalue of
hp in the sector with two electrons in Ap forming spin-
singlet states which is symmetric (antisymmetric) underS~
the spatial reAection x ~ —x. Let us evaluate e2 . In
the limit t t' ~, a spin-singlet state with two electrons in
the symmetric sector which has finite expectation value of
hp is written as

ndptdpt + (dptdzt + d2tdpt)
t t P t t t t

+ Pd2td2t + Bdi tdi 1 ~I?,t t t t

1

42+2

q&(o.) = p(o, ,+2) for any o. , (8)
where o. +z is the spin configuration obtained by
switching o.(x) and o(x + 2) in D. Since (8) holds
for any x H X', we find that p(o) = p(r) whenever

P,E~ o.(x) = g,~g r(x). Since Cir, , is written as

4 f = const(P, E~ a, t)4„„this means that 4 can bet

written in the form iIi = gM p nM(S, „) iIif, „where
the spin lowering operator is S,„=g, ~A c, tc, t. This
proves that iIi&, , and its SU(2) rotations are the only
ground states of H. qf =

Proof of lemma. —Because of the translation
invariance, it suffices to prove the lemma for (10)
x = 0. We first diagonalize the hopping part of
hp (obtained by setting U = 0). We express a
single-electron state supported on the sublattice where 4 is any state with no electrons in Ap. The
Ap = (—2, —1, 0, 1, 2) as a five-dimensional vector expectation value of the hopping part of hp in this state

p = (p 2, p i, pp, pi, p2). The normalized eigen- is given by (hp ) = (W, hp +)/(W, Q) = A[ —2(A2 +
= (A + 2) (0, —1, A, —1 0) with 2)s~n~ —(A + 2)s~P[ ] where A = ((a~2 + ~P~2 +

the eigenvalue ep = —(A + 2)s, p~') = (2(A + (y[ + [6[ ) '. lf we further let U t' ~, a finite energy
I)) 't (A, —1, 0, 1, —A) with ei = 0, p = (2(A + state must also satisfy cptcpt'Ir = 0 and ci tci 1'If = 0.
2)(A + 3)j ' [—(A + 2), A, 2, A, —(A + 2)] with These conditions lead us to the constraints

2A 2
A' + + y=0,

A2 + 2 (A2 + 2)QA2 + 3 (A2 + 2)(A2 + 3)
A 1

(A2 + 2)QA2 + 3 2{A2 + 2) (A2 + 3) 2(A2 + 1)
+ y+ 6 =0. (11)
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s a at
xGV
~=T,l

+ t a a
xEM
~=i,l

+UP n, tn (12)
xEA

which again contains next-nearest neighbor hoppings and
on-site potentials. Equation (12) should be compared
with (3). By a straightforward extension of the present
method, we can prove that the ground states of the model
with ~V~ electrons exhibit ferromagnetism when A, t/s,
and U/s are sufficiently large [12].
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