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Resistive Hysteresis and Nonlinear I-V Characteristics at the First-Order Melting
of the Abrikosov Vortex Lattice
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We study a three-dimensional network of Josephson junctions in a magnetic field, which undergoes
a first-order melting transition of the triangular vortex lattice. We perform a Langevin dynamics
calculation of the resistance and current-voltage (I V) ch-aracteristics. We find hysteresis in the
resistance as a function of temperature as measured in untwinned YBa2Cu307. Close to the melting
temperature the I-V curves are S shaped with hysteresis and show a melting transition when increasing
the current, driven by the blowing out of current nucleated vortex loops.

PACS numbers: 74.60.Ge, 74.50.+r, 74.60.Ec

Abrikosov demonstrated in 1957 [1] that there is a
lattice of vortices or fiux line lattice (FLL) in type II
superconductors for magnetic fields such that H, i ( H (
H, 2. In high-T, superconductors, thermal fluctuations
can melt the FLL at a temperature T~ well below
the mean field critical temperature T,(H) [2]. Brezin
et al. [3] have shown that this melting transition should
be first order. This was recently confirmed by Monte
Carlo simulations [4] in the three-dimensional (3D) XY
model. The first experimental evidence of a first-order
transition of the FLL was obtained by Safar et al. [5] in
untwinned YBa2Cu307 crystals: a sharp hysteretic jump
in the resistance was measured at very low bias currents,
as a function of temperature and magnetic field. This
result was reproduced by others, including the effects
of the direction of the magnetic field, twin boundaries,
and disorder [6—8]. However, in principle, a resistive
hysteresis can also be caused by dynamic processes
or disorder [9,10]. Recently, Jiang et al. [11] have
argued that current-induced nonequilibrium effects can be
invoked to explain some of their experimental findings on
the resistive hysteresis. In view of this, there is a need to
make a connection between the thermodynamical melting
phase transition and the behavior of nonthermodynamic
quantities such as the resistance. Here we use Langevin
dynamics simulation to compare the hysteresis in the
internal energy and first-order transition seen in Ref. [4]
with the resistive hysteresis and current-voltage (I V)-
characteristics calculated in the same model. We find

good correspondence when the bias current is low enough.
A new result is the existence of a current-induced melting
of the FLL and hysteresis in the I-V characteristics close
to TM, which explain the resistive hysteresis.

The high-T, superconductors can be described, below
a mean field transition temperature T, ", by the ther-
mal fluctuations of the phase 0 of the superconducting
order parameter 'P = ~'Ij'~e' . A lattice version of this
approach leads to the 3D XI' model [12—14], with the
Hamiltonian

X = —g J~ cos[5~0(r) —A„-(r)],

+ il~(r, t), (2)

with Io = 2' J/4o and R the shunt resistance, consid-
ered isotropic. The thermal noise term has correlations
(rj~(r, t)rl~ (r', t')) = (2kiiT/R)6~ ~ 6„„6(t—t') To-.
gether with the condition of current conservation,

QI~(r) —I„-(r—p, ) = A~ I~(r) = I,„,(r), (3)

this determines the full set of dynamical equations. The
boundary conditions are periodic along the x (a~) and z
directions, and open in the a2 direction, with a current bias
I in the so-called [011]current injection direction [17].
This corresponds to I,„,(r) = I(6„,o —6„,L, ). From (2)

which has been studied both for zero [12] and finite
magnetic fields [14]. We consider a 3D stacked tri-
angular lattice [4] given by r = r&a& + r2a2 + r3z,
with r~, r2, r3 integers, and p, = a~, a2, a3, z, with a~ =
x a2= —2x+ & y, a3= 2x+ 2 y. The phase
difference is 5~0(r) = 0(r + p) —0(r). The

gauge factor A~(r) = P f, A . dl (txio = h/2e
is the quantum of fiux) depends on the mag-
netic induction B = V X A = Bz [15]. This gives
A, (r) = 0 and a frustration f in the xy planes:

pxY piaquetteAp (r) = 27rf = 2vrBa ~3/44o, with the
lattice constant a =

~ p, ~. We consider an isotropic
lattice with J„-= J for all p„where J = tIioa/16' A

with A the London penetration depth.
Current-driven XY models are usually studied by means

of a current-conserving overdamped Langevin dynamics
[13,16]. The current I~(r) in each bond of the 3D lattice
is given by the resistively shunted junction model

q)o dh~0(r)I- (r) = + Io sin[5~0(r) —A„-(r)]
27r dt
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and (3) we obtain

do(r)
dt

X QG(r, r') I„,(r') +
r/ 4p 60 r'

ri„(r',t)

Here the 3D Green's function is the solution of A~

& A~G(r, r') = 6, , under the given boundary condi-
tions. We simulate Eq. (4) with the same algorithm as
in Ref. [13] with a time step of 6 t = 0.05'/ with rj =

3rIio/2' RIo and with an integration time t;„,= 5 X 10 r/
after a transient of 10 ~J.

The choice of a triangular network in the xy planes
is the most convenient lattice discretization: (i) there is
no frustration between the ideal triangular FLL and the
periodic pinning potential of the Josephson lattice, as
there is in cubic networks [4], (ii) it has the lowest single
vortex pinning barrier with a critical depinning current of
I = 0 042Io (I . = 0.1Io in a square network) [17], and
(iii) it has the largest Josephson current (above which
the whole network dissipates, equivalent to the depairing
current of continuous superconductors) I/ = 2Io for the
[011] current injection direction (I/ = Io in a square
network) [17]. We note that the model considered here
does not have any random pinning. The weak pinning
present here is introduced by the periodic discreteness
of the array geometry. We consider a field of f = 1/6
vortices per plaquette and a system of size 18 X 18 X
18. These parameter values and model system are the
same as in the Monte Carlo simulation of Ref. [4]: see
their Fig. 1 for a plot of the unit cell of the vortex
ground state. It was carefully determined in [4] that
the FLL melting transition is first order, with hysteresis
in the average energy around the melting temperature
TM = 1.175 (in units of 1).

We calculate the normalized voltage drop
along the direction of the current as v =

g„,„,(0(ri, Lz, r3) 8(l i 0 r3)). In Fig. 1(a)
we show the dc resistance R = v/i for a low current
i = 0.01 (currents are normalized by Io) as a function
of temperature. We increase the temperature in steps
of AT = 0.01 from the FLL ground state at T = 0,
taking as initial cond:tion of each step the final state of
the previous step (adiabatic sweep). For very low T we
have R = 0 since we are well below the critical current
i, (T = 0) = 0.042. At higher temperatures T ~ 1 there
is a small finite R due to thermally activated vortex
motion. At a temperature T+ = 1.20 there is a sharp rise
in R of about 1 order of magnitude. When we decrease
the temperature from a disordered initial condition at
T = 1.5, also in an adiabatic sweep with AT = —0.01,
we find a sharp drop in R at T = 1.15. Thus we
obtain the hysteretic cycle in R shown in Fig. 1(b). A

very similar hysteresis was seen in the experiments [5—
8,11]. The hysteresis loop occurs around the equilibrium
melting temperature, T & TM & T+. (In Ref. [11]
the resistive hysteresis was interpreted to be below TM,
however, higher currents can shift T+ very close to
TM, see below. ) The resistive hysteresis has about the
same size in temperature as the hysteresis in the internal
energy in the equilibrium simulations of Ref. [4]. This
shows that there is a strong correspondence between the
first-order character of the equilibrium melting transition
and the resistive hysteresis at low bias currents. We
also show in Fig. 1(a) the helicity modulus Y, along
the z direction (proportional to the superfluid density)
[14,18]. It vanishes at about T+ when increasing T, thus
indicating the vanishing of superconducting coherence,
and it has the same hysteresis as R when decreasing

[19]. We have also calculated the vortex struc-
1

ture function: S(k) =
L z L X„,(n, (k, r3)n, (—k, r3)).
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FIG. 1. (a) Left scale, squares, full line: resistance R = v/i
as a function of temperature T for a bias current i = 0.01 and
integration time t;„,= 5000~J. Dotted line: R vs T for the
same i but t„,= 5007.J. Right scale, triangles, dashed line:
helicity modulus along the z direction Y, vs T, for i = 0.01.
Insets: intensity plots of the vortex structure factor S(k), for
T = 1.0 (left), and for T = 1.35 (right). (b) Left scale: R vs
T, for i = 0.01 (squares, full line) and for i = 0.02 (triangles,
dashed line). Right scale, stars, dotted line: intensity of the
Bragg peak SG vs T. Results for a 18 X 18 X 18 lattice with
field density f = 1/6 IIux quanta per plaquette.
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The vorticity along the direction v is n;(R, r

nint([h - 0(r) —A~(r)]/2'] for & t p, ;p laquet te nin p, p,

nint[x] is the nearest integer to x. Intensity p ois o
5(k) are shown in the insets of Fig. 1(a) for tempera-

there are Bragg peaks which disappear above TM. In
F . 1(b) show the intensity of one of the Bragg pea sig. y we

= G')withof the f = 1/6 vortex lattice, SG = S(k = G), wit

& (—x + —
Y) when increasing T for i = 0.01.

There is a sharp drop at T+, indicating melting of the
The simultaneous vanishing of SG and Y, shows that the
FLL melts into an entangled liquid [2,18]. The resistive
hysteresis epen s od d on the integration time (analogous
to a time o mf "measurement") and the bias current. In
Fig. 1(a) we show as a dotted line the resistance calcu ate

'
h ' = t, 10. For a fast integration the hysteresiswith t;„,—t;„tq~

nd T is larger due to the metastability of theloop aroun M is ar
In Fi . 1(b) wesupercooled and overheated phases. In Fig. we

show the resistive hysteresis for a larger bias current
i = 0.02. The loop shifts to lower temperatures (not
1 er centered around TM, but yet T+& ~ ~ M. ,onger

01the size of the loop is slightly smaller than for I = 0.
Larger currents further reduce the size of the loop, but
then we are in a nonlinear current regime. Experiments
b J t l lead to the conclusion that the resistive

se ofhysteresis is due to a current-induced effect, because o
the absence of "subloops" in the hysteresis (see Ref. [11])
upon partial cooling and heating. However, subloops
have been observed recently in very clean samples [20].
Our results on the hysteresis dependence on t;„tsuggest
the existence of subloops in this mode .1

A better understanding of the origin of the resist-
ive hysteresis can be obtained by studying the I-V curves.
In Fig. 2 we show a set of I-V curves for different
temperatures. This can be compared with the experiment

0.0100—

of Kwok et al. [8] (see their Fig. 4). For T» TM our
I-U curves show Ohmic linear behavior down to the
lowest currents for the vortex liquid state. On the other
hand, for T « TM the I-V curves show a downward
curvature, evidencing a critical curr ent. In this model,
the vortex lattice is pinned at low currents by the periodic
pinning po en iat t 1 of the discrete Josephson networ . t
temperatures very close to TM (inin the re ion of theg h
resistive hysteresis loop) the I Vcu-rves show an 5 shape
also seen in the experiments [8]. Here there are two
regions of linear "Ohmic" dissipation, for low and high
currents. The linear region at low currents corresponds
to the thermally activated flow of the vortex lattice. he
1 near region at high currents was interpreted as due toi

et al.Aux How of the unpinned vortex lattice by Kwok et a.
However, an analysis of the 5-shaped I-V curves shows
that it corresponds to the fiow of the vortex liquid, as we
now discuss.

In Fig. 3(a) we show the I Vcharacte-ristics for T =
1.170, very close to TM = 1.175. We start with the T = 0
FLL as initial condition, then increase T to T =T = 1170.
From that state the current is increased in an adiabatic
sweep wit steps oh t of Ai = 0.005. We see that when
increasing the current the I-V has a kink at a characteristic
current iM (also seen in the experiments [8,12]), above
which it becomes linear. In Fig. 3(b) we see that t e
intensity of the Bragg peak Sg has a sharp drop at this
same current iM. This means that the vortex lattice melts
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FIG. 2. Current-voltage characteristics for different tempera-
rom to totures and the same model parameters as in Fig. 1. rom op

bottom T = 1.3, 1.22, 1.17, 1.12, 0.8 (TM = 1.175).
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FIG. 3. (a) Voltage v as a function of current g for T =
1.170. Squares, full line: increasing the current from an ordered
vortex lattice at i = 0, and then decreasing the current. Stars,

rrent from an initialdotted line: increasing and decreasing the curren ro
state at i = 0.01 corresponding to the upper branch of the R vs
T calculation in Fig. 1(b). The inset shows the melting current
iM vs T (b) Left scale, stars, full line:. SG vs i, when increasing
the current. Right scale, squares, dotted line: vortex excitations
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when increasing the current. Therefore, the linear part of
the I-V curve at high currents corresponds to a fIowing
vortex liquid, for T close to TM. When decreasing the
current from i » iM toi = 0, we see hysteresis below iM,
since the voltage continues to be almost linear with i down
to very low currents. Therefore the vortex liquid state
is "supercooled" when decreasing the current below lM.
This result correlates with the hysteresis in the resistance in
Fig. 1. For example, we take as initial condition the state
in the supercooled branch of the resistance in Fig. 1(b)
at T = 1.170 and i = 0.01, and from this point we both
increase or decrease the current. This is shown as dotted
lines in Fig. 3(a): the resulting points lie close to the ones
obtained above when decreasing the current from i « i~.
Worthington et al. [21] have suggested a current-induced
melting mechanism in their S-shaped I-V characteristics.
They attribute the melting to a heating noise induced by
random pinning forces. However, there is no randomness
in the model considered here. Moreover, Koshelev and
Vinokur [9] have shown that the effect of random pinning
is to melt the FLL when decreasing the current. Note that
this occurs at large currents in a nonlinear regime, and that
it gives a clockwise hysteresis loop in the R vs T curve,
instead of the anticlockwise loop seen here at very low
currents.

In order to understand the physical origin of this cur-
rent induced melting, we examined the thermally induced
vortex excitations. We calculate the average number of
extra vortices along the z direction, n, = (~n, (R, t)[)—
f, where the average is over space and time, and the
average vortex excitations in the xy directions n ~

=
X;=t([n;, (R, t)~) [(n, (R, t)) = f and (n;,. (R, t)) = 0 be-
cause of vortex number conservation]. In Fig. 3(b) we
plot n, /n ~ as a function of current. We see that n, /n, Y

increases when increasing i up to i~, and then is almost
constant for i ~ i~. Then as the current is decreased be-
low i M, n, /n, ~ remains constant at its vortex liquid value,
reflecting the hysteresis seen in the I-V curve; n z and
n, show similar behavior independently. This indicates
that the effect of the current is to blow out thermally in-
duced vortex loops, and to orient the loops in the plane
perpendicular to the current, thus increasing both n, and
n ~. These two effects increase with increasing current
and tend to disorder the FLL, inducing melting at iM (T).
We have observed this phenomenon for T close to TM, in
the range 1.12 ( T ( 1.19. Even when iM(T) decreases
with temperature [see inset in Fig. 3(a)], it does not vanish
at TM but at a higher temperature T = 1.20 in the over-
heated region. On the other hand, at T «T~ and for
large currents i » i„there is a Bow of an ordered vor-
tex lattice. We find that this Aowing lattice melts when
increasing T at T+" = 1.15, and then it freezes when
decreasing T at T " = 1.10. This suggests that iM(T)
should diverge at T

In conclusion, our results show how a first-order vortex
lattice melting transition correlates with a hysteresis in

the resistance. Our results compare very well with
the experimental measurements [5—8, 11] in untwinned
YBa2Cu307 crystals [22]. Moreover, we find a new
current induced vortex lattice melting caused by the
blowing out of vortex loops. A measurement of hysteresis
in the I-V characteristics close to the melting temperature,
complemented with neutron diffraction measurements of
the vortex structure, would confirm this scenario.
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