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Bose and Vortex Glasses in High Temperature Superconductors
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A theory of the Bose glass transition is developed. Mapping vortex trajectories onto world lines
of 20 bosons gives a glass transition line as the locus where bosons become localized in the random
potential. We describe the glass-to-liquid transition induced by columnar disorder in both dilute and
dense vortex systems. A vortex glass transition in the light of the developed description is discussed.

PACS numbers: 74.60.Ge, 05.60.+w

The nature of the location of vortex and Bose glass tran-
sitions in the vortex state of high temperature supercon-
ductors (HTS) is an extensively debated question of much
theoretical and practical interest; for a review see [1]. It
has been demonstrated [2,3] that quenched point disorder
drives the vortex crystal into a glassy state characterized
by divergent energy barriers for vortex motion, but does
not create infinite barriers in a vortex liquid. This sug-
gests that in clean crystals the vortex glass melts into a
liquid via a first-order thermodynamic transition close to
the melting line B (T) of the pure crystal. On the other
hand, the smallness of the Lindemann number cL, control-
ling the position of the melting line makes it possible that
even weak disorder can modify the melting significantly
and transform it into a continuous second-order transition.
The effect of strong pinning, in particular the pinning due
to linear defects introduced by irradiation of the supercon-
ducting sample with heavy ions, may be more dramatic:
Columnar defects expand significantly the irreversibility
region [4] where a low temperature Bose glass phase with
vortices localized near columnar defects was shown to
exist [5].

In this Letter we address the question of the structure of
the different vortex states and the nature of the transitions
between the possible phases in the presence of quenched
disorder. We adopt the description of the low temperature
glassy phase as the state where vortices are localized
in potential wells generated by disorder. We propose a
phenomenological description of the glass transition and
construct a phase diagram of the mixed state of HTS in
the presence of columnar and point disorder.

We start with a discussion of the constitutive relation
B(0) as modified by disorder in the weak field regime.
Next, we investigate the glass transition due to columnar
defects and point disorder. We restrict our consideration
of the Bose glass transition to moderate fields, where
columnar defects outnumber the vortex lines, and explore
the analogy between the statistical physics of vortices
and the quantum mechanics of 2D bosons introduced by
Nelson [6]. Mapping vortices onto world lines of 2D
particles describes the Bose glass state as the phase where
the 2D bosons are localized by the quenched 2D disorder

(which is the image of the columnar defects) [5]. Within
this approach the glass transition line is obtained as the
transition from the localized into the superAuid state in the
related Bose system at zero temperature. At small fields,
B «H, ~, the transition occurs when the localized radius
l of vortices (or the size of a vortex sheaf), localized
by fluctuations in the distribution of pinning centers,
becomes of order of the vortex spacing a. At large
fields, 8 » H, ~, long range vortex-vortex interactions
are essential and the transition line is determined by
the balance between elastic/pinning energies and thermal
fluctuations. As we will show below, both limiting cases
can be described in a unique manner as the line where the
vortex related part of the tilt modulus c44 of the vortex
liquid diverges.

A model free energy for X Aux lines in a sample of
thickness L defined by their trajectories r; is

L
~&i ~

dz g —
l

+ U(r, ) + QV(r, , )2 Bz)
(1)

The magnetic field is aligned along the z axis, perpen-
dicular to the CuO planes, r;~ = ri —r~, e~ = e2eo is
the linear tension of the vortex lines, eo = (4O/4' A), e
is the anisotropy parameter, U(r, ) represents the disorder
potential, and V(r;i) is the vortex-vortex interaction. We
assume Gaussian disorder with the correlation function
(U(r)U(r')) = hi 6(r —r'), b, i

= Uoro/d, where
Uo is the depth of the potential well of defects, and
ro and d are the radius of and the distance between
them. In the dilute limit a » A, vortices can be treated
as hard core interacting but otherwise independent
lines. The related quantum mechanical system is a
weakly nonideal gas of hard core 2D bosons, with
interactions described by the renormalized dimensionless
coupling constant gi = go/[I + go in(I /A n„)], go =
(Fi/2MT ) f dr rV(r) = ei cob /2'trT [7], where n is
the vortex density. One finds [8] that a single vortex line
is always localized by a columnar defect (this corresponds
to the existence of bound states in the 2D potential well,
however weak). The vortex localization radius grows
with temperature and at T = T = (2/~7r )rogei Uo
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compares to the mean distance between tracks. This
implies that at T ) T* the vortex is localized on the
fluctuations in the spatial distribution of columnar defects
rather than on individual pins [5], and the description
of the impurity potential by a white noise function is
justified.

First, we derive the constitutive relation 8(H) near H, i

in the presence of disorder. At low fields vortices occupy
the states with the smallest free energies corresponding
to the lowest energy states in the related Bose system.
The density of states n(E) for the particle in a Gauss-
ian 2D random potential was found in [9—11]: n(E) ~
exp( —2.9E/Eo) ~ N(E) = fo dE'n(E'), where Eo =—
—A~@i/T is the energy of the localized vortex ground
state. The localization length l = T /(6i)'~2ei [5], and
can be larger than the penetration depth A, in which case
more than one vortex can be placed into the potential well
formed by the ensemble of defects. Noninteracting vor-
tices would have collapsed to the lowest state; interac-
tions, however, give rise to a sequential filling of energy
levels in the potential well. The number of particles N in
each potential well is determined by minimizing their total
energy X' = NE + gE—N(N —1), where g = 2.97rgi.
N is the closest integer to 1/2 + 1/2g and depends on T
and B. Different W can correspond to different kinds of
Bose glasses.

The free energy density of the vortex system is
F = I dE'n(E')'E(E'), where E is defined by n

N I dE'n(E'). Using the definition of the chemical
potential p, = 40(H —H, i) = BF/Bn, where n

8/4O, one arrives at

8 —= (Cio/I g) exp[3VrIio(H —H, )/Ep],

H&H, i, (2)

with the numerical factor 3V = 2.9/[1 —g(N —1)].
Measuring the finite induction 8(H & H, i) one can scan
the disorder-induced density of bound vortex states.

Next, we describe the glass-to-liquid transition in the
dilute limit, o. » A, as the process of sequential filling
of energy levels in the potential wells generated by dis-
order and the eventual overlapping of the sheaves with
the delocalization of the vortices taking place. In the
glassy region the mean distance between the sheaves is
large and each sheaf contains an integer number of vor-
tices. The transfer of a vortex from one sheaf to another
increases the total energy 'E by 2gE, and the vortex ex-
change between sheaves is unfavorable. However, such
an exchange increases the positional entropy and the cor-
responding gain in the free energy can be estimated as
E exp( —r/I), where r = a JN is the distance between
the sheaves. As long as this entropy gain remains small
as compared to gE, the number of vortices in each sheaf
is preserved, the sheaves are isolated, and the system re-
mains in a glassy state. Upon increasing the degree of
filling the distance between the sheaves decreases, the

vortex states become more extended, and the percolation-
like transition into a vortex liquid occurs. The transition
line is determined by the condition E exp( —r/I) = gE
leading to BBG = (4O/l )L, where E' = ln(1/A n )/

(2)

[lnln(1/A n)] for g « 1, and 5 = 1 for g = 1. Sub-
stituting I = T /(Ai)'~ ei one finds

Biio = Bc (T /T) L ~ [(T, —T)/T], (3)
which coincides up to a factor L with the low field
Bose glass transition line found in [5] from the condition
I = a. The same qualitative picture and result hold
for the localized- (glass-) to-superfiuid state transition
in a weakly nonideal 2D Bose gas placed on a random
substrate.

The above picture applies to large sheaves with l ) A.

In the opposite limit of a dense system where I & A,
the vortex-vortex interactions change the character of the
transition. As the density of vortex lines grows, the
intervortex repulsion leads to correlations in their spatial
arrangement. This cooperative behavior leads to the onset
of short range order, and the long range correlations
are destroyed by the random potential only on a large
spatial scale [2]. To analyze the glass-to-liquid transition
in a dense system, a « A, we adopt the "harmonic
oscillator Lindemann" approach developed in [5]. We
consider a representative vortex in the solid phase as being
localized by the rest of the lattice in the potential cage
of transverse size a. In the related quantum description
the representative particle is confined in a harmonic-
oscillator potential well. The delocalization (i.e. , melting
for the pure system) occurs when the ground state energy
becomes a fixed fraction (given by the Lindemann number
cI.) of the saddle-point barrier energy.

In the spirit of collective pinning theory we first consider
the clean lattice, and then find perturbatively the contribu-
tion of the disorder to the harmonic oscillator barrier en-
ergy. The characteristic transverse (uT) and longitudinal

(Lr) sizes of thermal fiuctuations of the representative vor-
tex in the cage are determined by the minimization of its
elastic energy X', i

= c66u L + ei(u /L) under the con-
dition X', i(ur) —T. This gives rise to uT = T/Qc66ei,
LT = Qei/c66, where c66 —exp( —a/A) at 8 & H, i, and

c66 —8@o/(87r A) at 8 ) H, i is the shear modulus de-
scribing the interaction of the representative vortex with
its neighbors. The transition into the liquid occurs when
the temperature matches the characteristic shear barriers,
which is cLc66a LT in the absence of disorder. Defects
increase this elastic barrier by the pinning energy 'E~ =

Lr Ai/(uT + $ ) in the volume uTLz. . The term uT in
the denominator accounts for the thermal reduction of the
pinning potential [1]. The equation determining the tran-
sition line then reads

cI c66a LT + LT + i/(ur + s ) . (4)

Generally speaking, the free energy barrier for the vor-
tex has a purely energetic (elastic) part [the first term on
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the right-hand side (rhs) of the equation] and an entropic
disorder-induced part (the second term). If the disorder
term on the rhs of the equation is small compared to the
elastic one, the localization line lies slightly above the

(&) (&)
melting line, and the resulting transition BH~ ~ Bm is ex-
pected to remain a first-order transition. However, because
of the smallness of the Lindemann number, cL = 0.1 —0.2,
even weak disorder can distort significantly the elastic bar-
rier and change the order of the transition. At the tem-
perature T* where cr c66a LT = 'E„, disorder starts to

(&)
dominate the transition and the first-order line BEG ter-
minates. At lower temperatures T ( T* Eq. (4) reduces
to T = E„(T),which can be viewed as the generalization
of the Lindemann criterion to the disorder-dominated case,
and gives the second-order glass transition

Bao —— 4rIiph te ep/T ~ (T, —T),(2) =
T )Tdp, (5)

with Td~ = eep$ /a defined by the condition uT = s. At

T ~ Tdp, Bao ~ (T, —T) .

In the dual Bose representation the transition from the
vortex liquid to the glass results from the suppression of
the superAuid density n, by quenched disorder, and the
position of the Bose glass transition, where bosons (vor-
tices) become localized, can be found from the condition
n, = 0. To explore this approach let us establish the cor-
respondence between the vortex part of the tilt modulus
and the superfluid density n, in the related Bose system.
Evaluating the longitudinal part of the correlator of the
vector potential (A, (r)A, (0)) in the clean Bose system one
can show that

c44 ——(B /4') [1 + (4~8 n, ) ']. (6)

This defines the vortex related part of the tilt modulus
c44 = B /(47rA) n„which becomes infinite at the Bose
glass transition line.

In the liquid phase the disorder-induced renormaliza-
tion of the inverse vortex related tilt modulus can be de-
termined within the lowest order perturbation theory [12]:

1 1 T nest dqq
vR v v 2 4 (7)

C44 C44 (C44) Ei 8 (q)
where a(q) represents the spectrum of the 2D re-
lated bosons. In the dilute limit A ( a the Bogoliu-
bov spectrum is given by e(q) = [T q /(2et) +
47rT n q /e~ In(A n )]' [6], the expression for a
weakly nonideal Bose gas. In the dense limit, a ( A,
the related Bose system is equivalent to a system of
2D bosons with Coulomb interactions, which drive the
acousticlike Bogoliubov spectrum to the plasmon spec-
trum with co(q = 0) = cu„. The plasmon frequency co„
can be easily derived from the table of correspondence
between boson and vortex quantities: ~ = 47rnep/Et.P
The dispersion e(q) at small wave vectors q has been
derived in [13]. We propose the interpolation formula for

the spectrum as

e (q) = T tu„—2epT q /~et + (Tq) /(2ei) . (8)

The spectrum has a roton dip at q = qp = E ep/T. The
transition line is estimated from the condition 1/c44
0. Evaluating the integral in (7) with the appropriate
spectrum and equating the inverse tilt modulus to zero
one immediately recovers Eqs. (3) and (5). Thus both
limiting cases corresponding to the dilute, a » A, and
dense, a «A, vortex systems can be obtained in a unique
way by using the appropriate formula for the spectrum
a(q) in the general formula for cq4 (7).

Shown in Figs. 1(a) and 1(b) are the two possible re-
alizations of the Bose glass transition, corresponding to
high, B (T*) ( B@, and low, B (T*) ) B@, concentra-
tions of columnar defects. The first-order line is shifted
to higher temperatures THG as compared to the melt-
ing temperature T in the clean crystals [1,5]: Tao =
T [1 + (7r CI a/2d) (T*/T )2], and is expected to ter-
minate around T = T*. In the strongly disordered sys-

(&)
tern [see Fig. 1(a)] the first-order line Bao continues as

(2)
a second-order transition Bno according to Eqs. (3) and
(5) at B ~ H, i and B ) H, i, respectively. The low field

FIG. 1. Schematic phase diagram for superconductors with
columnar defects B@ ) B,„(T") (a) and Bq, ( B (T") (b).
The thin white line is the pristine melting line B (T). The
dashed line denotes the accommodation field 8" [5] separating'
the single vortex and bundle-pinning regimes. Drawings are
not to scale.
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(2)
reentering Bose glass line BB~ rejects the localization
of almost isolated individual vortices. The disorder ef-
fects increase when one follows the transition line towards
lower temperatures as long as 8 ( 8@. For B ) Bg„ the
vortex system is increasingly dominated by vortex-vortex
interactions, and we expect the first-order Bose glass line
to recover and approach smoothly the original melting
line. The maximum effect of columnar disorder is ex-
pected then around B = B~, [1,5].

We discuss briefIy the effect of point defects. At
small fields, a ) A, considerations analogous to those
used in deriving Eq. (3) give rise to the transition line
from a vortex liquid into a vortex glass as BvG =
(Hrz Ei g/T) exp[ —(T/Tdp) ] The c.orresponding trans-
verse localization length is l = TL, /e~, where L, =
es Qjo/j, exp[(T/Tdz) ] is the pinning correlation length,
and Td„= (7 eisa )' is the single vortex depinning tem-
perature [1]. Note that with exponential accuracy, the
same BvG was obtained in [14] as the line where the di-
lute vortex liquid becomes unstable with respect to point
disorder. The discrepancy in preexponential factors orig-
inates from the simplifying assumption of [14] that the
vortex core radius coincides with the range of the in-
teraction potential. The vortex glass transition line cuts
the low temperature branch of the melting transition and
then converts into a crossover line between single vor-
tex and vortex bundle pinning regimes, traversing the
solid domain almost vertically along Td~. In the deriva-
tion of the intermediate field (s ~ a ( A) glass line,
the disorder term on the rhs of Eq. (4) has to be sub-
stituted by /ALT/(gz + u2). As long as this term re-
mains small as compared to the elastic term, point defects
produce a small correction to melting. At higher fields,
where analogously to the case of linear defects, the im-

purity contribution becomes of the order of the Linde-

mann term, ct c66a LT — ALT/(ur + s ), i.e. , around
the T = Td~, the first-order line terminates. Then the

equation T = yLr/(g + uT) describes the crossover
between the "conventional" and the very viscous pinned
vortex liquid [3] (or, equivalently, vortex slush [15]). The
shear modulus becomes finite at the second-order line ac-
cording to the scenario proposed in [15].

Note that disorder fIuctuations may localize vortices far
from their equilibrium positions in the lattice. As a result
the melting line. (the onset of the quasi-long-range order),
as detected, for example, by the onset of the neutron
diffraction pattern or by the jump in the magnetization,
may appear below the melting transition in the clean
system. We expect this downward shift of the melting
line to be especially significant for point disorder.

In conclusion, we have constructed a phase diagram for
the Bose glass systems. We find an upward shift of the
irreversibility line due to columnar defects at B ~ Bq&.

We predict that the first-order transition terminates at cr]ti-

cal points at temperatures where entropy barriers match
the elastic ones and continue as a second-order glass
transition in the regions where entropy barriers dominate
the vortex elastic free energy. The critical points have
to move to higher temperatures with increasing disorder.
For sufficiently strong disorder (or in strongly anisotropic
compounds where the melting line lies in a low tempera-
ture region) a lower second-order line lies above the
turning melting point and merges with the dense limit
transition line. Such a system experiences the second-
order transition into a single-vortex glass and the low
field glass reentrance disappears. For weaker disorder a
double-reentrant transition can exist: Upon decreasing the
field near the turning point the vortex liquid solidifies into
a glass and then melts again according to the reentrant
melting behavior of the pristine system. At lower fields
the interactions between vortices become exponentially
small and they get localized again (the isolated vortices
are always localized). The low field glass corresponds
to the localization of the individual vortices by disorder,
whereas the glass near the turning point arises due to
collective vortex bundles pinning.
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