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New Phases in an Extended Hubbard Model Explicitly Including Atomic Polarizabilities
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We consider the influence of a nearest-neighbor Coulomb interaction in an extended Hubbard model
and introduce a new interaction term which simulates atomic polarizabilities. This has the effect
of screening the on-site Coulomb interaction for charged excitations, unlike a neighbor Coulomb
interaction which reduces energies of locally neutral excitations. We find that the spin density to charge
density wave phase transition, however, is determined by the unscreened on-site Coulomb repulsion.
The order of this phase transition is affected by polarization. We show that new phases appear, one of
which is ferroelectric, when atomic polarizabilities are explicitly included.

PACS numbers: 71.45.Lr, 75.30.Fv

Hubbard-like models [1] are extensively used in
attempts to describe the electronic structure and related
physical properties of strongly correlated systems. The
basic assumption made in arriving at such models is
that the long range Coulomb interactions are effectively
screened and the short range on-site and nearest-
neighbor Coulomb interactions can be treated as effective
parameters screened from their free ion values [1,2].
The Coulomb interactions usually considered are the
on-site interaction U, and for the extended Hubbard
model also the nearest-neighbor interaction V, leading to
a Hamiltonian for an s band of the form [3—9]

H = —t g (c; cl + Hc) + U gnawn 1

(&j).~

+ Vgn; n~ (1)
&ii)

where n; =— c; c; and c; (c; ) creates (annihilates)
an electron (or hole) on site i with spin rr = 't or J.. The
hybridization is denoted by t and a nearest-neighbor pair
by (tj).

Only the open shell valence orbitals are considered
explicitly. It is assumed that all of the other interactions
and closed shell orbitals merely lead to renormalized
parameters U, V, and t, but do not change the low energy
scale physics. To our knowledge we present the first study
of the validity of such an approach. We introduce a new
term that treats the dominant contribution to the screening
of the atomic U value in insulators by including the
atomic polarizabilities explicitly. Such a term is known to
reduce the Cu d-d Coulomb interactions in high T, 's from
the atomic value of 16 eV to the solid state value of about
5 eV [10], and in C6o, U is reduced from its gas phase
value of 3.6 to about 1.6 eV because of the molecular
polarizabilities [11]. Such polarization screening effects
are very large and of the same magnitude as U itself. The
importance of such an atomic polarizability in describing
properties of insulators is well known, determining the
optical dielectric constants via the Clausius-Mossotti
relation and Mott-Littleton-like [12] approaches, and also

are the driving force in the formation of layered structures
such as Nile, TaSq, etc. [13].

The new term Hz, i has the direct influence of screening
the bare on-site Coulomb interaction U from its atomic
value and reduces the correlation gap. As is well known,
a nearest-neighbor interaction V yields a charge density
wave (CDW) ground state for V ) V, . Quite unexpect-
edly V„which in one dimension is close to U/2, is deter-
mined by the unscreened value of U and not the screened
value, as is implicitly assumed if one uses simply an
extended Hubbard model. The nature of the phase tran-
sition, however, can be affected and polarization screen-
ing can drive it from first to second order. Furthermore,
Hp ] introduces a new type of charge density wave as
well as a ferroelectric phase into the phase diagram in one
dimension. Contrary to recent claims [14], we find that
V, unlike Hz, i, does not act to reduce the correlation gap
determined by U, but introduces charge transfer excitonic
states in the correlation gap of a Mott-Hubbard insula-
tor. It does, however, act to increase the nearest-neighbor
exchange 1 and therefore affects strongly the magnetic
susceptibility [15] and also influences the cohesion energy
[16]. We hereby demonstrate that the explicit inclusion of
screening mechanisms in model Hamiltonians can lead to
interesting new physics and that they do not merely renor-
malize the parameters.

We start with a brief review of some aspects of the
extended Hubbard model described by Eq. (1). For a
half-filled s band and for V ( V„ the system has an
antiferromagnetic spin density wave (SDW) ground state,
which can be schematically represented as )t'j, f$). For
V ) V, the ground state is a diamagnetic charge density
wave [6], which can be represented as ) ]'$ ]'$). The critical
value of V is approximately located at V, = U/z, where
z is the coordination number. In a one dimensional
system the phase transition is found to be second order for
small U/t and first order for large U/t, with the crossover
occurring at U/t = 3 [6,17].

The effective exchange interaction in the SOW state
is determined by the energies of virtual nearest-neighbor
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electron-hole excitations. In the strong coupling limit,
these are at an energy U for V = 0, leading to an
exchange J = 4t —/U. V has the inhuence of low-
ering the energy of the excited state since it is an
attractive nearest-neighbor electron-hole interaction. So
the exchange is, in perturbation theory, given by J =

4t /—(U —V). This is of importance when, for exam-
ple, considering the magnitudes of parameters in a t-J
model; i.e., t/J can be considerably smaller than one may
have estimated from only t and U.

The relationship for J gives the impression that V acts to
screen U [14]. The exchange, however, involves locally
charged neutral excitations. Charged excitations are not
screened and therefore the correlation gap is not reduced
[18]. This can easily be understood by realizing that in
separating the electron from a hole to large distances the
nearest-neighbor electron-hole attraction is not operative.
The infiuence of V is to introduce new charge transfer
excitonic (charge neutral) states inside the gap.

To demonstrate this we show in Fig. 1 the com-
bined one electron removal and addition spectrum of the
extended Hubbard model in one dimension calculated by
exact diagonalization using a 14 site cluster with peri-
odic boundary conditions. We see that the conduction

gap defined as EGs + E~s —2EGs, which is the gap
between the first ionized state and the first electron affin-
ity state, is independent of V up to a critical value of
V, = U/2. For V ~ V, the gap increases with V. At
V, there is a phase transition from the SDW to the CDW

1
Epoi =—

»

2n»F (2)

where u» is the polarizability at site j and F is the
electric field at site j. We have neglected dipole-dipole
corrections [19]. So Ez, ~ has the effect of reducing the

gap from U to U —2E&,1 in the limit t ~ 0.
We want to study the consequences of explicitly includ-

ing such an interaction in the Hamiltonian. Consider an
interaction term such as

H... = —Pgi g na;,
k jminn(i)1

ground state. In the limit t ~ 0 the gap is U for V ~ V,
and is 4V —U for V ) V, (for general bipartite lattices
the gap is given by 2zV —U for V ) V,).

Also shown in Fig. 1 is the optical conductivity,
calculated using the current-current correlation function.
These spectra are drawn with the zero of energy at EGs
We see states at energies below the conduction gap which
are excitonic in origin. These excitonic states soften as V
increases and approach the center of the gap for V V, .
This behavior is not new and certainly not unexpected.
For the CDW phase, excitonic states are again present in
the gap at an energy of 3V —U for t ~ 0 above the
ground-state energy of the N —1 particle system.

We now consider the atoms to be polarizable. In Fig. 2
we show how the surrounding atoms polarize due to
higher order Coulomb interactions (for a discussion see
de Boer, Haas, and Sawatzky [19]). Moving an electron
from one atom to another, far away, will polarize the sur-
rounding atoms of the created hole and of the created dou-
ble occupied site. The polarization or relaxation energy
that reduces the ionization potential E and enhances the
electron affinity E", is given by

v=6 Qv

V=4 eV

where 6;» is the unit position vector connecting neighbor-
ing sites i and j and nj —= g nj . The sum over the

nearest neighbors is proportional to the electric field F;
on site i. With EP, 1

= zP, H&, 1 describes the relaxation
energy due to placing a charge in a polarizable medium.

V=2 eV
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FIG. 1. Electron removal, electron addition, and optical spec-
tra for a 14 site extended Hubbard ring. For each value of V
the upper curves are the electron removal or addition spectra
and the lower curve is the optical spectrum. The zero for the
optical spectrum is at the first ionization states, indicated by the
arrow. The parameters U = 10 eV and t = 1 eV are taken.
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FIG. 2. Schematical representation of the excited SOW state.
The charge excitation defining the effective Coulomb repulsion
U and induced polarizations are indicated.
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It is assumed that polarization processes are much faster
than the time scale related to the electron hopping.

Using exact diagonalization of finite clusters we studied
the inhuence of adding H&, ~ to the extended Hubbard
model. In Fig. 3 we show the conduction gap as a
function of V, for various values of P for a 2D 10 site
cluster and a 1D 14 site cluster at half filling. We see
that for P = 0, V hardly infauences the gap for V ( V„
as discussed above. We have also studied the cluster size
dependence in one and two dimensions and found that
finite size effects do not alter this conclusion, although the
2D cluster is still rather small for studying the polarization
effect. We also see, as expected, that P does reduce
the gap and has the inhuence of screening U. Strangely
enough though, the SDW-CDW transition occurs at the
unscreened value of V, = U/4 in two dimensions. This
is easy to understand by simply realizing that in the CDW
state each site has inversion symmetry so no net fields are
present and therefore Hz, ~

= 0 for the ground state. So
to produce the double occupied sites in the CDW phase
costs the unscreened value of U. For t = 0, the total
energy EsDw = zNV/2 and EcDw = NU/2.

For a hypercubic lattice it is possible to exactly map the
total Hamiltonian onto a new Hamiltonian that has a more
transparent form. The interaction part of this Hamiltonian
reads

H;„, = (U —2zP) P nI&nI& + V g n&nl+,-

+ zP Pn;n;, .-, (4)
l,i

where the sum over i is the sum over the unit lattice vec-
tors a;. Now the "screening" of U by P is directly ev-
ident, but a new repulsive next-nearest-neighbor interac-
tion is also present. This new repulsive term adds new
phases into the phase diagram.

In Fig. 4 we show the new phase diagram for t = 0
for a one dimensional infinite system. We see the usual
SDW-CDW transition for V = U/2 at small P. For
small V we see another SDW-CDW transition but now
to a sort of charge density wave of bipolarons. Note that
for P = U/4 we expect bipolarons to form but because
of the long range repulsive term introduced by Hp
these bipolarons already appear at P = U/8 provided
they crystallize into a lattice as shown in Fig. 4. In this
phase each atom tries to be in an as large as possible
electric field. Also of interest is the intermediate phase of
Fig. 4. This is a ferroelectric phase which is obtained as
a result of competition between V and P and consists of
a combined charge density wave and spin density wave.
Note that P need not be small with respect to U and
V, since the reduction of U can be of the order of U,
as discussed above. This is especially true if one would
also include lattice polarization effects which can lead to
bipolaron (U —2zP ( 0) effects.

Polarization screening is also of influence on the nature
of the SDW-CDW phase transition. We studied this

by calculating the CDW order parameter distribution
functions for various one dimensional small clusters [20].

These indicate that the global maximum of the order
parameter changes discontinuously and the transition is
first order for small polarization. For large polarization
the maximum changes continuously, indicating a second
order phase transition. This can be understood as follows.
Close to the transition, but still in the CDW state, the low-
lying energy excitations are "droplets" of the SDW state
[6]. Polarization sceening tends to soften the excitonic
states below the conductivity gap. In our model the
energy of a droplet of size n is e(n) = V —ct —4P—
n(U —2V), with c a constant. V —ct —4P is the
surface energy, which is the dominant term for small n
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FIG. 3. Size of the conduction gap Eg, p as a function of
the intersite Coulomb repulsion V for a 1D 14 site cluster
(lower curves) and a 2D 10 site extended Mott-Hubbard cluster
(upper curves), with inclusion of polarizable atoms. The on-
site Coulomb repulsion U is kept constant at 10 eV, while
E~, ~ was varied. (Ez, ~

= 0 for the top curve; further, E~,l
=

0.5, 1.0 eV.) The hybridization t is 1 eV.

FIG. 4. Phase diagram in an infinite one dimensional ex-
tended Hubbard system including polarization screening in the
atomic limit. P is the polarization energy and V the nearest-
neighbor Coulomb repulsion. A spin density wave phase, two
types of charge density wave phases, and an intermediate ferro-
electric phase are indicated. For each phase, translation invari-
ant electron configurations are schematically shown.

4660



VOLUME 75, NUMBER 25 PHYSICAL REVIEW LETTERS 18 DECEMBER 1995

and acts as an energy barrier for the phase transition. So
the surface energy is lowered by P, implying that P can
drive the SDW-CDW phase transition from first to second
order.

From these considerations we may conclude that a
description by means of Hubbard-like Hamiltonians, using
renormalized parameters, may yield misleading results.
When we take screening effects into account explicitly,
we showed that the conductivity gap in the spin density
wave regime is determined by the screened on-site
Coulomb repulsion and independent of nearest-neighbor
Coulomb repulsion. The point, however, at which the
transition from the spin density wave to the charge
density wave regime takes place, is determined by the
bare values of on-site and nearest-neighbor Coulomb
interactions. We gave a full phase diagram for the
interaction part of the extended Hubbard model including
polarization screening. Two new phases, one of which is
ferroelectric, and a U = 0 phase transition appear. The
U = 0 phase transition between two different types of
charge density waves shows that the effect of a nearest-
neighbor Coulomb interaction and a polarizability are
quite different. Furthermore, polarization screening tends
to drive the SDW-CDW phase transition from first to
second order. This may serve as an example of the
fact that in predicting phase transitions in the various
Hubbard models, screening cannot be taken into account
by using effective parameter sets, but that screening
mechanisms should be explicitly incorporated in the
model Hamiltonian. We believe that more studies of this

type of Hamiltonian, including also the effect of t on
the phase diagram, different dimensions, and frustrated
lattices, could lead to new insight into correlated systems.
Of special interest also is a study of a system in which
the polarizable atoms are different from the ones with the
open shell as, for example, in CuO or the high T, 's.
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