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Core Structure of a Vortex in SuperAuid 4He
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The microscopic structure of a quantized vortex core in 20 He is investigated using the fixed-
phase approach. We present a general method to suggest new forms for the phase of a many-particle
wave function. Starting from the Feynman phase, our scheme generates backflow corrections with
qualitatively different properties than the starting Feynman vortex. We evaluate particle density,
circulating current, core radius, and energy for an isolated vortex at zero temperature using Green's
function Monte Carlo.
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Even though vortices constitute a generic phenomenon
in quantum systems, their microscopic structure has still
not been deduced [1]. The determination of the core
parameters (core radius $ and energy F.,) and even the
density at the vortex core are not yet derived from the
microscopic Hamiltonian. In order to shed light on these
nontrivial matters one has to consider many-body methods
for strongly coupled systems. In this Letter we develop a
general stochastic approach and apply it to the problem of
a single quantum vortex in a 2D Bose superfiuid confined
to a disk.

The idea that vortices in a rotating bucket of He
might take the form of filaments with a core of atomic
dimensions is due to Feynman [2]. Gross, Pitaevskii,
and Fetter [3] considered a field theory description of
an inhomogeneous weakly interacting Bose gas (P" field
theory). Though this approach has been successful in
describing the potential fIow at large distances, it gives a
poor representation of the short distance behavior, mainly
because of the strong correlations of He atoms. A more
realistic description of the core has been put forward by
Chester, Metz, and Reatto [4], who considered model
functions of the Feynman form and methods of classical
statistical mechanics to determine the density profile and
energy of the vortex configuration. Previous approaches
yield a total density p which vanishes at the center of
the core. A step forward to relax that assumption was
taken by Fetter [5] who distinguished between condensate
and noncondensate contributions to the z component of
the total angular momentum Lz. Based on the weakly
interacting results, he conjectured that the particle density
in rotating "He should be roughly constant, including
the axis of the vortex. Strictly speaking none of the
above two scenarios is exact though, as will be shown;
the Feynman representation is close to the full quantum
mechanical solution of an isolated vortex in 4He.

The axed-phase (FP) method [6] is a general stochas-
tic approach to study quantum systems whose many-
particle wave functions are necessarily complex. This
class of problems includes fermions in external magnetic
fields and topological excitations (vortices) in 2D and
3D quantum fluids, among others. For a given physical

system, whose dynamics is governed by a nonrelativistic
Hamiltonian H, one can formulate the Schrodinger eigen-
value problem as separate equations for the modulus ~4~
and phase y of the many-body wave function tIi(R)
~txi(R)) exp[i@ (R)]

Re(exp[ —imp]Hexp[ip]} JtI&(R) f
= Ef4(R) [,

Im(exp[ —iq&]Hexp[iq&]} )tI~(R)( = 0, (2)
where R = (ri, . . . , r;, . . . , rtv) denotes a point in dN
dimensional configuration space. Physical states tI& can,
in principle, represent particles of arbitrary statistics. The
essence of the FP method consists in making a choice
for y and solving the problem for ]4~, Eq. (1), using
stochastic techniques (e.g. , Green's function Monte Carlo).
It turns out that the equation for the modulus can be
exactly solved with Monte Carlo methods so the remaining
problem which we address in this paper is how to pick
the phase.

To study a state of a given symmetry we can work
with the restriction of the Hamiltonian operator to the
subspace of that particular symmetry. It can be proved
that the FP method provides a variational upper bound
for the energy and, for a prescribed trial phase yT, the
lowest energy consistent with this phase (and symmetry).
In general, there are some mathematical constraints that
the pT's ought to satisfy; for instance, they should
conserve the symmetries of the Hamiltonian (unless
some are spontaneously broken), particle statistics, and
be differentiable. Apart from that, physical intuition,
and mean-field-type approaches, there is no procedure
to generate phases systematically. In the following, we
will sketch a general method to improve, in a systematic
way, a given phase based on stochastic averages. The
method is valid for time-reversal invariant systems, or
for subspace restrictions of complex Hamiltonians which
result in real symmetric operators.

For the sake of clarity, suppose we have a quantum
many-body system whose Hamiltonian is H = —Ab. +
V(R.), where A = h /2m and V(R) is a general poten-
tial. itIi }are normalized eigenstates of H with eigenval-
ues F . We are interested in finding the state 4y, which
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is an eigenstate of H (Ev) and symmetry S. Let us define

f, (Rp) = dR G(R, Rp, r), (3)
+G(Rp) +r(R)
exp rEG G

where 'PG is a positive guiding function and

G(R. Rp, r) = (R lexp[ —r(H —EG)] IRp&
'IfG (R)

G P

We now apply these ideas to the problem of a single
vortex in liquid He. A vortex is characterized by having
a nonzero angular momentum, Lz. The Feynman vortex
wave function [2] is Wr = iIip g; exp[ig;j, where 0; is
the azimuthal angle of particle i. Using the Feynman
phase pF = g; 0; as the zeroth order ansatz we compute
the first correction according to Eq. (8):

(4)
is the importance samp-led Green's function, and ~Itr is a
trial state of a given symmetry whose phase we want to
improve. Then, we can project out the ground state of a
given symmetry which has a component in 9'r.

~*(R.) = »m.-"expl: —«v] &+r I @v&

Let us assume now that O'G is the true (bosonic) ground
state 4p (real and normalized) and EG is the bosonic
ground state energy. Then, it can be shown that Green's
function G(R, Rp, r) is a probability distribution. If we
separate 'Pr and iI~v as 'Pz. (R) = iI~p(R) exp[ —A(R)]
and tIiv(R) = rIip(R) exp[ —Av(R)], where II and
Av are complex functions, Eq. (5) can be written as
exp[ —Av(R)] = lim, p, (r) (exp[ —A(R)]},~„,where
p, (r) is a complex c-number, and the angular bracket
(. . ), g„means average over random walks beginning at
Rp with a density G(R, Rp, r). Since we are averaging
over a probability, this expectation value can be written
in a cumulant expansion [7]

p[ —I~(R)]& = p[—&&) + -(&&'& —&fI)') +

(6)
So far, no approximations have been made. Being

interested in finding only corrections to the phase of 9'r
(and not to the modulus), one can assume that A is purely
imaginary. Then, to 8(A3) in the cumulant expansion
the corrected phase is Av(Rp) = lim, &fl&, ~, . Now
consider the evolution equation for&A}, ~, in r:

a,&A},~„= A d RV' [VG —. 2GV'IniI~p]A(R. ) .

(7)
Using Green s theorem and the initial condition
(A} =p ~ = A(Rp), it can be integrated over imaginary
time yielding &A, },~, = A(Rp) + A fpdr'&AfI +
2V'In@p . V'0}, ~, . The solution to [6(r )] is

&II} ~„=A(Rp) + Ar[AA + 2V'ln@p V'A]. (8)
This is the main result of this paper; it tells us how
to correct any trial phase analytically. Our derivation
has relied upon the assumption 'ItG = 4'p. In general,
we do not know the exact ground state 4p', however, it
turns out that relaxing that assumption, i.e., considering an
arbitrary 'PG, leads to the same Eq. (8}with tI~p replaced
by 'Il'G [6(r )]. It is also straightforward to prove that
the correction given by Eq. (8} vanishes when an exact
energy eigenstate is used.

9'p, (10)

where 8 is the strength of the vortex, z; =
z; + ~g, ~, f(r;, , r, , r, )(z; —z, ) with z; =x; + iy;
defining the atomic position in complex coordinates, a
and gc are variational parameters, and f is the backfiow
function. 9"0 is the McMillan-Jastrow approximation to
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where we have assumed Cip = g;~j exp[ —u(r;i)] and

r;~ = lr; —r~ l. In order to take into account the stochas-
tic averaging which is neglected in Eqs. (8) and (9), we
keep the form of p~ but optimize the function u that ap-
pears in it. We call the derivative of the logarithm of the
optimized function f.

As another example, and to draw the analogy with
backfIow correlations in liquid helium, it is instructive to
analyze the phase correction when an impurity atom at
position rl moves through the system with momentum
hk. Then, the free-particle phase is A(Rp) = k . rt.
Our correlated correction to that phase turns out to be 2
Ar k g;~t V'tu(r;t). This is the phase of the Feynman-
Cohen backflow wave function [8]. By analogy, we call
cpp

—pF a backflow correction to the Feynman phase for
a vortex excitation. In both cases one takes the single
particle phase, and adds a pairwise sum whose strength
depends on the gradient of a potential-like term. The
analogous procedure for the modulus of the wave function
leads from a one-body wave function, to a pair-product
(Jastrow) wave function (first iteration), and to a three-
body, polarization wave function (second iteration). An
important feature of the corrected vortex wave function
is that the density at the core is no longer identically
zero and by doing a FP Monte Carlo calculation we can
estimate its density. Our procedure is an indirect proof
that the exact density at the core is nonzero; any pair
correlation in the ground state wave function will induce
a nonzero core density.

Now we describe our Monte Carlo calculations to
test this procedure. We consider a system of N bosons
of mass m in a disk of radius R, interacting through
a Lennard-Jones potential VLt(r), with an additional
potential confining the atoms to the interior of the disk
which mimics a static layer of helium at the edge of the
disk. We use lengths in units of tr (2.556 A ), energies
in units of A/tr (0.9276 K), and e = 10.22 K. The trial
states we consider are of the form



VOLUME 75, NUMBER 25 PH YS ICAL REVIEW LETTERS 18 DECEMBER 1995

the ground state modified by the existence of the disk
boundary

( b
5—

exp —
~

— exp[ —~(r;)],
1

with y(r) = (1 + exp[P(R — )]) '( /v'R2-
where b c d ~~, and ~ are vanational parameters.

Clearl W is an
FiNS. The

y T
'

eigenstate of angular momentuen um,

to 0. I
The eynman phase is recovered b tt'

to . It is clear from Eq. (10) that each particle is see-

the
ing a zero at a position different than th
t e particle density at the origin will not vanish (unless
Ic = 0, of course). We have used the form f (r;~, r;, r ) =
exp ( —[nr + (r +) (r; r~ )]) for the backflow function.
The two variational aparameters o. and y characterize dif-
ferent len th sca e
far from the

g a es. For y nonzero, particles wh hic are
rom the core axis will not contribute to the backflow,

so that we recover irrotational How outside of the core.
Our simulations contained N = 50 H diske atoms in a disk

of radius R = 9.31. Thhe ground state calculation corre-
sponds to 8 = 0, while for the vortex 4 = 1. We first
perform a variational Monte Carlo (VMC) calculation to
optimize the free parameters in the trial wave function, by
minimizing the fluctuations of the local energy. We use
a multiparticle Metropolis algorithm to compute the ex-
pectation value of the total energy, the particle density,

expectation values are evaluated with respect to the vari-
ational distribution: 1 (R) = (0'

( /([9' [( The VMC
energies for the three wave functions (ground state Eo,
Feynman vortex, and backllow vortex) are q t d Tare quote in Ta-

e and are computed by averagin the I 1

r [ H [O'T ( + V~„where the phase contri-
bution is V = & rV, (V; pT) . As will be explained be-
low, the parameters in the backllow functionion are optimized

~ ~

in a different way, by minimizin th fi d- h
'

g e xe -p ase energy.
e now improve on the VMC energy by usin the FP

calculation is almost identical to the st d d
g e

diffusionion (or Green s function) Monte Carlo [9]. We start
our FP computation assuming some phase yT and an ini-

according to 2 (R). We then diffuse, drift, and branch
each configuration as R' = R + F(R )
g is a random vector; each component is normally dis-
tributed with a variance of 2 r, and F = V ln ~'Ir

g
' of the trial function. Iteration of this procedureradient
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is equivalent to applying the importance-sampled Green's

es e stationary distri-unction and at convergence reaches th
ution g ) ~ (O'T[ ('Pr (, where Wr is the many-body

wave function with lowest energy whose phase is pr. This
procedure leads to the exact boson ground t t

( = 0) or determines an upper bound to the exact vortex
energy = 1). For the vortex, we considered tre wo possi-

e mixe " observ-i ities: with and without backllow. Th
a es are obtained as averages over 9r(R).

The modulus of the trial wave function does not affect
the final estimated energy but onl th fy e rate o convergence
to the final answer. However the ba kAac ow parameters, ~,
o. , and y, appearing in the phase do affect the estimated

tial derivative of the FP energy with respect to the hase
parameters using the usual formula for extrapolating from

n o e exact distri-the variational and mixed distributio t th
bution. For example, r) (Et„)~ ~ = 2 rl V

„T~&~~~, and iterated until the derivative acquired

, o. , and y quoted in Table I as well as the FP
yie st e

energies. It is seen that the backflow does not lower the
energy significantly.

Figures 1 and 2 show the VMC ( ), FP
and extra olated

~ ~

PvMC

p (ps) densities for the ground state, the
, FP (pFP)

Feynman vortex, and the backflow vortex. The large
ensities is due to thedifference between VMC and FP d

lack of proper correlations in the modulus of O'T. The
extrapolated value is defined as p~ =

performing path-integral Monte Carlo (PIMC
a = . K both in the Feynman vortex state and in
thermal equilibrium. The density evaluated by PIMC has
no bias. Notice that, although small, the value of the
backflow vortex densit y at the core is nonzero contrary to
what happens with the Feynman vortex. Another feature
worth mentioning is the drastic reduction of the bump

0.5 0.4

TABLE I. Totalal energies (in K) for the ground state (E '
vortex excitation Etion (Ev and E&) for a system of 1V = 50

sac Oj and

atoms. Numbers in ap rentheses represent statistical error bars.
0 = e

ptima1 parameters (see text): a = G. 15, b = 1.G,
.05, ~ = 0.7, u = 0.9, and y = 0.5.

0.'i

0.0
10

VMC
FP

&o

—1.77(14)
—15.59(15)

pF

4.55(14)
—9.68(14)

4.85(15)
—9.88(16)

FIG. 1. ThThe particle density p (in units of 1/rr ) as a function
of distance (in units of o.) from the axis of the v

p ase. n t e inset we show the density without the
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0.4

0.3

--——— Backflow
Feynman

TABLE II. Vortex core parameters: core radius g (in A) and
core energy E, (in. K) in the FP and extrapolated (Ex) cases
using both Feynman and backflow phases.

P 0.2
'~

Fp
Ex

1.32(8)
2.06(8)

I 43(8)
2.10(8)

2.8(3)
3.2(3)

2.7(3)
3.1(3)

0.1
at

0.0
10

FIG. 2. Comparison between backflow and Feynman extrap-
olated vortex densities. Both are indistinguishable for r ~ 5.
The inset displays superfluid vortex densities using backflow.

near the disk boundary as one passes from the VMC to
the extrapolated quantities. Finally, Fig. 3 displays the
circulating current which in the Feynman case is given by
Jti(r) = p(r)/r; the extrapolated current is defined in a
similar way as p~.

To our knowledge, there is no unique definition of the
vortex core parameters in terms of observables. Typi-
cally these parameters are introduced phenomenologi-
cally. Here we give a definition on physical grounds.
The core of a vortex is expected to rotate like a solid
rod. Then, the core radius g delimits the boundary be-
tween solid-body rotation and potential fIow. Based on
this picture, we define s as the position where the circu-
lating current Ja has a maximum (see Fig. 3).

0.4

0.3

Je "
0.1

0.0

FIG. 3. The extrapolated current Je (in units of h/mcr ) as
a function of distance (in units of cr) from the axis of the
vortex. The arrow indicates the value of the core radius g.
The inset shows current profiles resulting from VMC (upper 2
curves) and FP (lower 2 curves) calculations with and without
backflow.

Once the core radius is defined, the core energy is
evaluated as E, = Ev —Eo —2N/R In(R/$), i.e. , we
subtract the asymptotic hydrodynamic energy (which is fi-
nite only for a disk of finite radius and accounts for most
of the energy) from the excitation energy. We present the
result of these calculations in Table II. These parameters
were also estimated using the Kosterlitz-Thouless recur-
sion relations to superfluid densities obtained with PIMC
[10] obtaining g = 1.9(2) A and E, = 2.7(2) K, values
which are roughly the same as the ones we calculated.

In conclusion, we have studied the microscopic struc-
ture of an isolated vortex in He using the fixed-phase
method. We have introduced a genera1 scheme to gen-
erate new forms for the phase. %'e show that the first
correction to the Feynman phase is of the backflow form.
Aside from a 4% correction to the density near the core
axis, Feynman phase yields a very good description of a
vortex in superAuid He.
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