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Dynamics of Runaway Electrons in the Magnetic Field of a Tokamak

B. Kurzan, K.-H. Steuer, and G. Fussmann*
Max Plan-ck Inst-itut fiir Plasmaphysik, EURATOM IPP-Association, D 857-48 Garching, Germany

(Received 6 July 1995)

An energy cap of runaway electrons is found experimentally by observing their bremsstrahlung
spectra in the ASDEX tokamak. This observation is explained by analyzing the dynamics of runaway
electrons, including acceleration in the toroidal electric field, deceleration due to synchrotron radiation
losses, collisions with plasma particles, and a resonance between gyromotion and magnetic field ripple
of the tokamak. For the dynamics of runaway electrons a Fokker-Planck equation in momentum space
is developed.

PACS numbers: 52.55.Fa, 52.25.Dg

The collisional drag force of the plasma particles,
exerted on a moving electron, decreases for superthermal
electrons with increasing electron velocity. Thus an elec-
tric force acting on the electron exceeds the collisional
drag for velocities higher than the so-called "critical ve-
locity" where both forces are equal. The electrons, which
are faster than this critical velocity, are continuously ac-
celerated; i.e., they run away [1]. The runaway electrons
moving on toroidal paths in the tokamak reach a max-
imal energy when the synchrotron radiation loss due to
their motion on the curved path balances the energy gain
in the electric field. The radius of curvature depends on
the pitch angle, which is the angle between the direction
of electron velocity and magnetic field. For zero pitch
angle the radius of curvature is maximal and equals the
major radius of the tokamak, and the typical maximum
energy of the runaway electrons for the ASDEX toka-
mak [2] is 65 MeV. However, much lower energies are
observed.

In ASDEX runaway electrons were generated at the
beginning of a plasma discharge at 0.1 ~ 0.01 s because
of a low thermal electron density and high electric field.
Because of higher thermal electron density (3 X
10'9 m ) and lower electric fields (0.1 V/m), the
generation of runaways is lateron negligible. Since most
of the runaways are generated in a time interval of only
20 ms, they do not populate a plateau between the critical
energy and the maximal energy of the runaways but form
a monoenergetic beam with an energy width of only about
300 keV. Investigation of the dynamics of these runaways
was done by observing the hard x-ray bremsstrahlung
spectra generated by runaways hitting a tungsten target
outside the plasma [3]. With increasing time the energies
of the emitted quanta increase also, until for times above
0.8 s the bremsstrahlung spectrum stays constant (Fig. 1).
This stationary spectrum is clearly generated by monoen-
ergetic runaway electrons with energy 9.4 ~ 0.2 MeV.
Therefore a plateau distribution for the runaways, as
mentioned before, can experimentally be excluded. From
a free-fall model an energy of 24 MeV would be expected
at 0.8 s. So the observed lower energy can easily be
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FIG. 1. Measured bremsstrahlung spectra of runaway elec-
trons in the ASDEX tokamak (dNo/dEO the number of quanta
per energy interval, Eo the energy of the quanta). The station-
ary spectrum is clearly generated by monoenergetic runaway
electrons [spectrum calculated with formula (2BS) of [4]].

reached. The confinement limit [5], arising from the
balance between the centrifugal force of runaways and
the Lorentz force generated by the poloidal magnetic field
via plasma current, is an additional upper boundary of
the energy of runaways. Since the confinement limit for
runaways in Fig. 1 (plasma current 240 kA) is 85 MeV,
the observed maximum energy of the runaways is not a
confinement loss. Also the low final energy of 9.4 MeV
cannot be explained by additional poloidal motion of
runaway electrons on drift surfaces [5], neglected so
far, because this changes only slightly the radius of
curvature and thus the synchrotron losses. A dramatic
lowering of the energy stems from the gyromotion of
the runaways having a finite pitch angle. The collisions
of runaways with plasma particles increase the pitch
angle but are not effective enough, so that the runaways
are decelerated due to enhanced synchrotron losses. A
very efficient mechanism to increase the pitch angle, and
thus the synchrotron losses, which finally leads to the
observed energy blocking of runaways, is the resonance of
gyromotion with the nth harmonic of the magnetic ripple
(Fig. 2), as will be shown. The ripple perturbation of the
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toroidal component k, (n) = nN, /R, poloidal component
k„(m) = (2nm)/Cd, Cd the poloidal circumference of
drift surface, r the positional vector, and e, the direction
perpendicular to the drift surface).

The strength of the magnetic ripple relative to the
toroidal magnetic field is calculated to be typically of order
BBio/B = 10 and BB„ /B = 10 —10 5 for n ~ 2,
with 6B„generally decreasing with increasing n, m.

Dynamics of runaway electrons in tokamaks. Wh—en
runaway electrons are being accelerated in the toroidal
electric field, their energy increases, and their gyrofre-
quency ~„decreases. If one of the exact resonance
conditions

3 of the 16 toroidal field coils

FIG. 2. Toroidal n = 1 ripple resonance: the runaways per-
form one gyrorotation between two toroidal field coils.
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axisymmetric magnetic field of the tokamak is due to the
finite number of coils generating the toroidal field. From
the approximate resonance condition

me

nW,R'
(cu„ is the gyrofrequency of the runaways, e the ele-
mentary charge, B the magnetic field, y the relativistic
gamma factor of the runaways, m, the electron rest mass,
n the toroidal harmonic number, W, = 16 the number of
toroidal coils, R the major radius, and c the speed of light)
the toroidal resonance for the observed energy can be de-
duced. The maximum energy of runaways of 9.4 MeV
(B = 2.2 T at R = 1.65 m) is resonant with the n = 7
toroidal harmonic of the magnetic ripple field. In an-
other discharge with the same magnetic field and thermal
electron density, but with a faster plasma current ramp-up
(higher electric field), a final energy of the runaways of
13.4 MeV was reached, which is then the n = 5 toroidal
ripple resonance energy.

Magnetic ripple field. —For the effect of energy block-
ing due to ripple resonance, only the component 6B, of
the ripple perpendicular to the drift surfaces is important,
since the components tangential to the drift surface only
change the direction of the guiding center velocity [5] and
not the partition of the energy between guiding center and

gyromotion. 6B, can be described as a Fourier series in
the toroidal and poloidal directions

[y„ is the relativistic gamma factor of runaways, resonant
with the (n, m) component of the ripple and vz, the guiding
center velocity [5] of runaways] is fulfilled, the gyromotion
of a runaway is in resonance with the nth toroidal harmonic
of the ripple magnetic field. Since the gyrofrequency
varies —1/R via the toroidal magnetic field and the ripple
frequency k„X vs, through k, proportional to 1/R, the
runaways stay ripple-resonant during their motion along
the drift surface, if they are so at one major radius.
The Fourier components 6B„do not vary along one
drift surface. Thus, for a quantitative treatment of the
ripple resonance effect, the toroidal drift surfaces can
be transformed into planes in a slab geometry, where
the magnetic field, independent of the major radius, is
tangential and the ripple 6B, perpendicular to these planes.
The dynamics of a runaway electron can then be described
by the equation of motion

dp - p p= —eFeg, —F~ ——e
dt p ym,

6B„. - pX Bes, + g sin k„X t!e,
2 ym,

(p is the momentum vector of the runaways, F. the
toroidal electric field, eg, the direction of the guiding center
velocity, and t the time) with decelerating force due to
synchrotron radiation [6]

BB, = g g " sin(k„X r)e,
n=1 m=O 2

Fs= ——I mcy

(BB„ the Fourier components of the ripple magnetic field (r, is the classical electron radius) with the radius of

!
perpendicular to drift surfaces, k, the wave vector with curvature averaged over one gyrorotation,

(
1 1 (5 r

R2 R2
cos (6) + cos (6) sin (6) + cos (8) sin (6)! —+ + —sin"(8)

(2 8R r
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(6 is the pitch angle and rg the gyroradius of the
runaways).

Near a single ripple resonance the equation of motion
can be simplified to

p« = eE —Fs —e cos(6),pgc pg ~~nm

p ym, 4
pg pgc ~~nm

p~ = Fs — + e cos((I)),
p ym, 4

yme yme

(p« is the guiding center momentum, pg the gyration
momentum, and 6 the phase difference between gyration
phase and ripple phase).

For microscopic times t « 2m/Ace the ripple reso-
nance induces a reversible periodic exchange between the
energy of gyromotion and of the guiding center motion.
For macroscopic times t » 2'/5 ~ the gyration momen-
tum pg changes in second order of cos(B) according to

eBB„cos(6)
pg2 = — pgFs

yme MM

Thus, for F~ 4 0, which is always fulfilled in a toka-
mak, the gyration momentum changes according to the

!
position of pg, compared to pg«m, the guiding center

momentum resonant with the (n, m) component of the
ripple. The gyromomentum increases for pg, ( pgcn
(h~ & 0) and decreases for p«& p«„(h(L) & 0).
The effectiveness of this energy exchange can be quan-
tified by the toroidal electric field necessary to cross the
ripple resonance: Simulating the particle dynamics with
the above equations, electrical fields of about 1 V/m are
found to be necessary for crossing relative ripple strengths
of 68/8 = 10 —10 . These are much higher than the
typical toroidal electric field of 0.1 V/m. Since the effect
of the coherent gyromotion in the ripple field is so strong,
one would not expect runaways with energies as high as
10 MeV. A lowering of the ripple resonance efficiency
is reached via an incoherent gyromotion of the runaways
with respect to the ripple phase. For a diffusion of the
gyromomentum, for which the phase difference between
gyromotion and ripple must be sufficiently random, it was
suggested [7] that neighboring ripple resonances should
overlap, so that the runaway motion becomes chaotic and
can be described by quasilinear diffusion. Since, e.g. ,
at ASDEX and ASDEX Upgrade [8] the resonances do
not overlap due to small ripple, this criterion cannot be
applied there. However, the runaways collide with the
plasma particles: This changes the gyration phase ran-
domly. The Lorentz force accelerating the gyromotion
then imposes a random walk on the gyromomentum. The
effect of the collisions [9] is simulated by [10]

mdc ) 2emec
p(t + At) = p(t) + kc — 1 + '

! + At ~ $2kcem, cht,
p - p

p(t + ttt) = p(t)(t —»pttc&t) —)tlt —t '(t))2ottttcttt,

with p the momentum of the runaways, p, = cos(8), t
the time, and /(), t a small time interval;

e'n, lnA
C

m, c24~so
n, the density of thermal electrons, lnA the Coulomb
logarithm, c the speed of light, and eo the dielectric
constant;

Zeff +
&a~c = &c ', q'+ 1,

2q mec
Z, ff the effective ion charge and q = p/m, c.

With these collisions the minimum electric field for
crossing a ripple resonance of BB„ /8 = 10 is low-
ered to about 0.1 V/m (Fig. 3). This is equal to the typi-
cal toroidal electric field in a tokamak. Thus runaways
cannot cross a ripple resonance of BB„ /8 ) 10 for an
electric field of 0.1 V/m, or, if the electric field is smaller
than 0.1 V/m, they cannot overcome a ripple harmonic
of BB„ /8 = 10 . Since for the observed seventh and
fifth toroidal ripple resonant energies BB„ /8 and E
are of the values discussed above, the ripple resonance

mechanism can quantitatively account for the observed
energy gap of the runaways.

Fokker-PIanck equation. —When collisions are taken
into account, the critical electric field for crossing the rip-
ple resonance is equal to the one obtained by simulating
the dynamics of the ripple resonant runaways via a diffu-
sion coefficient (Fig. 3), which is deduced below. Thus,
with the above direct simulation of the particle dynamic,
the use of a diffusion coefficient for the ripple resonance
mechanism is justified. The diffusion coefficient for the
gyromomentum in the ripple resonance is calculated by

dpt(dt)dpt(dt)
)D„~ = lim

dt~~ dt p(0) b, pg,

with dt the time interval, ()s(o~ the averaging over the
random phases 6(0) at dt = 0, and []t,„ the averaging
over the resonance width,

ba„
pgc pg
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and the diffusive How of the pitch angle due to ripple
resonance,
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FIG. 3. Minimal electric field FM for crossing a ripple reso-
nance (b,B/B = 10 6) depending on the gyration momentum

ps for incoherent motion due to collisions (thermal electron
densities n, = (1 —3) X 10"9 m 3, effective ion charge equal
to 1), for ideal diffusion and for coherent motion.

The motion of runaway electrons can now be described
by the Fokker-Planck equation in momentum space

Bf +

+ X [(FF + Fc + Fs + FR)fj = 0
Bt Bp

(f is the distribution function), with the electrical force in
polar coordinates [9]

Fg = eF(~eq —$1 —prey)

(ey pointing in the direction of increasing pitch angle
8 and eq = p/p), the friction force due to collisions of
runaway electrons with plasma particles [9],

1 l„
Fc = —&cl 1 + —,le, + qD~ac 1 —p'

qz1 Bp,

the retarding force due to incoherent synchrotron
radiation,

With the developed Fokker-Planck equation the dynam-
ics of runaway electrons in a tokamak can be simulated if
the time evolution of thermal electron density and electric
field (corrected for the skin effect [5]) are known for a
particular discharge.

Forming of an extremely monoenergetic electron
beam. —When runaways accelerated in the toroidal
electric field cannot cross a particular ripple resonance,
they pile up at this resonance energy. Because of the
isotropization of the pitch angle in a ripple resonance,
runaway electrons are both accelerated and decelerated,
depending on their momentary pitch angle. The energy
spread of the resulting stationary distribution is smaller
than 75 keV for the 9.4 MeV runaways, as calculated
with the stationary Fokker-Planck equation. This is
so small that the energy blocked runaways fulfill the
conditions needed for a free-electron maser, which is
indeed observed in ASDEX Upgrade [11].
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