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Relativistic Ponderomotive Force, Uphill Acceleration, and Transition to Chaos
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Starting from a covariant cycle-averaged Lagrangian the relativistic oscillation center equation of
motion of a point charge is deduced, and analytical formulas for the ponderomotive force in a traveling
wave of arbitrary strength are presented. It is further shown that the pondermotive forces for transverse
and longitudinal waves are different; in the latter, uphill acceleration can occur. In a standing wave
there exists a threshold intensity above which, owing to transition to chaos, the secular motion can no
longer be described by a regular ponderomotive force.
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A so-called ponderomotive potential tI1„ is induced by
the oscillatory motion of a free charge. This potential
plays a dominant role in atomic physics (e.g. , multiphoton
ionization) and laser plasma dynamics (e.g. , parametric
instabilities, self-focusing, beat wave accelerator, fast
ignitor [1]). It was shown independently by several
authors [2] that, for a monochromatic electromagnetic
field of arbitrary space dependence,

E(x, t) = ReE(x)e

the oscillation center dynamics of a charge q is governed
by the so-called ponderomotive force f„,

monochromatic wave). The action S and the angle g
are both Lorentz invariant. The motion of the particle
is governed by Hamilton's principle,

dt
L(x(g), v(71), t(11)) dpi = 0.

Jx/
(4)

From the Lorentz invariance of 5 and q it follows that
the Lagrangian X (rl) = L(drl jdt) ' is invariant with
respect to a change of the inertial reference system.
Assuming that g is normalized to 2m for one full cycle or
period of motion, the cycle-averaged Lagrangian Xo,

2f„=— V(E E') . (2)
J' (11')dpi', (5)

mc
L(x, v, t) = — + qv A —qC1,

y = (1 —vz/cz) 'I (3)
%'hen an oscillation center exists, the transformation
to action-angle variables S = S(x, t), ri = rl(x, t), is
possible (e.g. , g = k . x —tot in the case of a traveling

Equation (2) was obtained from a first order perturbation
analysis of the Lorentz force [3] around the oscillation
center and is therefore subject to the usual smallness
constraints of certain parameters. In order to obtain
some weak generalizations of this expression, a variety of
different approaches was chosen [4—6]. Again, they are
characterized by (i) a perturbation analysis of momentum,
(ii) harmonic fields of type Eq. (1), and (iii) a small
ratio of oscillation amplitude to wavelength A. Recently,
however, in connection with the existence of new lasers
capable of delivering ultrahigh irradiance a real need for
relativistic expressions for f„, not bound by such limits,
has arisen. One of the aims of this Letter is to show under
which conditions f„exists and what forms it assumes.

The relativistic Lagrangian L(x, v, t), v = dx/dt, of
a charge q in an arbitrary electromagnetic field E =

V@ B A8/1ts glvell by

d ~Lp

6Vp

Lp

BXp
(6)

with Lo = Xo dg/dt. To demonstrate this assertion we
prove the following theorem.

Theorem. —The validity of Eq. (4) implies

(7)

Thereby N = (rif —11;)/27r is the number of cycles
over which Xo undergoes an essential change. The
symbol o(N ') means "vanishes at least with order 1/N

Proof. Let the variation be—an arbitrary piecewise
continuous function A(q). The nth cycle starts at q =
ri„, at which for brevity we use the symbols 6„=A(ri„),
BXO/tip„= (BXO/ciri)„„. If th=e same quantities refer
to an intermediate point g ~ g ~ g„+ 2~ we write
A„and BXO/tlri, and omit the index n for the interval.
In leading order the following holds:

depending only on the secular (i.e., oscillation center)
coordinates xp, vp through q, is defined. The oscillation
center motion is governed by the Lagrange equations of
motion,
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Xp dx) 6(Lp —5 ) dg [Lp(q + 5) —X(q + A)]dq— fop(q) —X (g))dg

Y/„+ 27T

Xp(g + 6) dg —27r Xp(g„+ 5„)
g„+2m

Xp(g) d g —2' Xp(g„)

q„+2m

A(g) dg—
~'gn

27r 5„=2~+BXp

~ 'gn

BLo 8Lp
a

8 'g g 8 'rt ~

In the last step the mean value theorem is used.
function A(g) is arbitrary. Therefore at g = g„, 6
5, can be chosen now without affecting 5, . With
substitution the leading order gives the result

a2
~o de —(2~)' g ~ In 2

meff C 2-Lo(xo, vo, t) = —,Ho(xo, po, t) = ypm, ffc
~ (2~) N max z

x max (6,).2 BzLp

~ "In

In this last step it is essential that BLp/Bg is a smooth
function (in contrast to 5, which is generally not). Now,
N = min(l/2'))Lom, „/(BXp/Brj„)( is chosen; i.e., over
N cycles Lp „changes at most by J' p. It follows that

( )
— / (11)

yo =
c )

Expressions (11) hold in any electromagnetic
field in vacuum in which an oscillation center
can be defined. In the special case of Eq. (10)

(I + q2A A /~mzc2) 1/2

In the oscillation center system, i.e., in the inertial
frame in which at the instant t vp(t) = 0 holds, the
ponderomotive force follows from Eqs. (6) and (11):

Po PPme

X/ f
Lpdg ~ " x max(A~. (8)

N
Performing the variation of this inequality leads to Eq. (6)
with the 0 replaced by a function f not larger than

x max /a[/N'.
In order to understand what inequality (8) means let

us specialize to a case of the averaged Lagrangian Lp
not depending explicitly on time. Then the Hamiltonian
Hp = pp vp —Lp(xo, vo), where Lo = ~o(~
vp), owing to dH/dt = BH/Bt = BLp/Bt = 0, e—x-
presses the energy conservation H = F. = const. A
straightforward estimate shows that the uncertainty f in

Eq. (6) leads to an energy uncertainty AH/H ~ 2'/N.
This means that Eq. (6) is adiabatically zero and the to-
tal cycle-averaged energy is an adiabatic invariant in the
rigorous mathematical sense [7]. For N ~ ~ Eq. (6) be-
comes exact. Perturbative averaging of a Lagrangian was
used in [8].

The relativistic Hamiltonian of a point charge in the
electromagnetic field follows form Eq. (3),

dpp BLo
c Vmett .dr»o

The force f„ is given the index N since it is a Newton
force (comoving system); r is the proper time. The
Minkowski ponderomotive force Fz, valid in any inertial
system, is

(f„" + z (f„vo)vo,
vo

(12)

—vo. fp

(13)
Hence the three-dimensional relativistic ponderomotive
force f„at any oscillation center speed vp is the Einstein
force,

+0 1 p/.
2

fz = ——.V meff + z (vp ' V mgff)vp . .
70 &o

The ~ with n = 1 for circular and 2 for linear polarization.
If the effective mass meff Xpyp(dg/dt)/c is intro-

this duced, Lp = Xo dry/dt shows that, in an arbitrary inertial
frame in which the oscillation center moves at speed ~0,
Lp and Ho are those of a free particle with space and time
dependent mass m, ff,

H = p . v —L = (m c + c (p —qA) )'/ +- 4,
(9)

with the canonical momentum p = BL/Bv = ymv +
qA. Its numerical value is the total energy F. = ymc +

Considering a monochromatic wave in vacuum we
can set 4& = 0. This motion is exactly solvable [9].
The cycle-averaged quiver energy in the oscillation center
system is given by

q'
Hp —mc =mc 1+ A. A*

~nmzcz )

(14)

In the nonrelativistic limit Eq. (2) is easily recovered.
To see the power of the Lagrangian formulation,

Eq. (6), we calculate f„ in a nonrelativistic Lang-
muir wave of the form E(x, t) = E(x, t) sin(kx —cut)
with slowly varying amplitude F. In lowest order
the potential is 4(x, t) = (E/k) cos(kx —co t) and
L = mv /2 —q4. In the frame comoving with

xo the particle sees the Doppler-shifted frequency
A = cu —kvp (plus higher harmonics that are not
essential here). With the periodic excursion g(t) around
xp the potential is 4(x, t) = 4(xp, t) + g(t)84/Bxo.
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From this Lp = mv /2 — E 'A — & esu ts

q. or E = E(x) (no explicit time dependence) that

dvo (1 —Vo) (1 —3Vo) !)

f 2cu (1 —Vp)4 —6nE~/mv2 cjx

0

(15)
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8-shaped) orbits are shown. The inclusion of E, in the
equation of motion is essential for producing the regular
orbits and the correct ponderomotive forces [Fig. 3(b)).
For comparison the bare dotted line is the ponderomo-
tive force from Eq. (2) without including the space charge
field F., in f„. We estimate from numerical runs that be-
yond INd = 10' W cm no regular ponderomotive force
exists in the dense plasma either.

We conclude as follows. (i) When an oscillation center
of motion exists, the invariant cycle-averaged Lagrangian
describes the pondermotive motion in arbitrarily strong
fields. (ii) The pondermotive force in a monochromatic
travelling, local plane wave of arbitrary strength in any
reference system can be expressed analytically. (iii)
In a longitudinal wave uphill acceleration and phase
space hysteresis may occur. Finally, (iv) superposition of
different modes of the same frequency leads to a limiting
intensity above which transition to chaos occurs. The
inliuence of dissipation (radiation losses, friction) on the
ponderomotive force is also well understood now, but will
be treated in a separate paper.

FIG. 3. Electron orbits and ponderomotive potential in a
standing plane, monochromatic wave in a uniform plasma. (a)
Electron orbits around oscillation center tied to the ions by the
induced ambipolar field; field distribution as in Fig. 2(a), field
strength g = 0.5 as in Fig. 2(b). In (b) the segments parallel
to X = kx indicate the orbit widths in the X direction; the
connecting dotted line indicates the relativistic ponderomotive
force. For comparison, the bare dotted line is f~ from Eq. (2);
the field is given in dimensionless units of eF/mac

and its dependence on the phase of the wave field is
weak (narrow band of orbits). The corresponding Nd
laser intensity (toNd ——1.78 X 10' s ) is INd = 1.21 X
10' Wcm At $ = 0.25 (INd

——7.6 X 10' Wcm )
some electrons starting near the maximum A(x) = 2A are
able to escape from the ponderomotive potential well; the
secular motion through the well exhibits a strong phase
dependence. At sc = 0.5 (INd ——3 X 10' Wcm ) the
motion becomes totally chaotic [see Fig. 2(b)]: Slight
changes in the initial time produce totally different
orbits, a clear signature of chaos. The chaotic motion
has its origin in the Doppler effect since the moving
electron "sees" one wave as blueshifted and the other
one as redshifted. No oscillation center exists under such
circumstances, and a secular time scale may only build up
on the statistical average.

Electrons in a dense plasma behave differently since
they are coupled to the massive ions by an ambipolar elec-
tric field F,. In Fig. 3 the calculation of Fig. 2 is repeated
for $ = 0.5 in a plasma of which the density is assumed
to be such as to keep the oscillation center in a steady
state position. In Fig. 3(a) the single arclike (no longer
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