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Memory-Induced Low Frequency Oscillations in Closed Convection Boxes
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The origin of the low frequency oscillation of the large-scale, recirculating How specific to the high
Rayleigh number regime in closed convection cells is investigated. It is shown how the oscillations
result from the delayed coupling of the boundary layer instabilities by the slow convective motion of the
recirculation. The model developed explains (i) the form of the dependence of the oscillation frequency
with the Rayleigh number f —Ra~, including the prefactor, the "anomalous" value of the exponent

y = 0.49, and (ii) the opposition of phase of the oscillations between the top and bottom boundary
layers.

PACS numbers: 47.27.Jv

A series of experiments [1] have reported on the
existence of a turbulent regime specific to high Rayleigh
numbers (i.e., for Ra = nghL3/tr v above 4 X 107) in
closed convection boxes (see [2] for a review). In this
regime, called "hard turbulence, " the heat flux through the
box (Nusselt number) has been shown to be proportional
to Ra /7 rather than to Ra'/, the latter scaling relation
being characteristic to moderated Rayleigh numbers ("soft
turbulence" ) [1]. Flow visualizations [3,4] and numerical
simulations [5] have also revealed in this high Rayleigh
number regime the existence of a quasi-two-dimensional
large-scale flow inducing a recirculation motion which
occupies all of the available space in the confinement of
the box (Fig. 1). This large-scale flow plays a key role
for the determination of the Nusselt-Rayleigh dependence.
The exponent 3 relates to situations where the thickness
3th of the thermal layers at the wall of the box is such that
the Rayleigh number based on this scale A,h is critical; the
2
7 dependence comes from the fact that A,h now depends
on the linear size of the box L through the characteristic
recirculation velocity u(L), which itself depends on L [1].

A concomitant observation in the high Rayleigh num-
ber regime is the low frequency, regular pulsation of
the large-scale flow, as revealed by direct visualizations
[3] and by the peak detected on the temporal temper-
ature spectra in the boundary layers close to the walls
[1,6]. The features of this phenomenon are as follows:
(i) the oscillation frequency increases like Ra~ with y =
0.490 ~ 0.005 and (ii) the boundary layers on top and
bottom of the ceil oscillate in opposition of phase [1,6].

The purpose of this Letter is to show how this oscillation
can be explained by the memory effect associated with the
recirculation flow in the confined space of the box.

Self-sustained oscillations are a common feature of a
large variety of marginally stable recirculating flows. The
underlying mechanism relies on the interplay between the
linear growth of the primary instability disturbances (most
of the time a shear instability of temporal growth rate r)
and the delay of the nonlinear saturation due to the slow
convective motion in the recirculation loop [7,8]. If r

is the recirculation time, the envelope equation for the
disturbances A(t) reads [7]

d—A(t) = rA(t) —p,A(t —r)'A(t).
dt

This evolution equation, which has some similarities
with the delayed logistic equation and reduces to the
Landau model for rr ( vr/4, displays nonlinear self-
sustained oscillations whose period can be computed from
the dynamical parameters r and 7.; the parameter p, sets
the amplitude of the oscillation only [8].

The top and bottom boundary layers in the convection
box are permanently sheared by the recirculation motion
[9]. The horizontal shear velocity corresponds, by mass
conservation, to the buoyancy driven ascending and de-
scending velocity which scales like the free fall velocity
u(L) —(cthgL)' where n, b, and g are the thermal ex-
pansion of the fluid, the temperature difference between the
top and bottom of the cell, and the acceleration due to grav-
ity, respectively, L being the height of the cell (assumed
here to present an aspect ratio of unity). The Reynolds
number of the boundary layers sheared by the velocity
u(L) parallel to the walls Ret = u(L)L/v = Ra' 2Pr
where Pr = v/tc is, considering the value of the Rayleigh

FIG. 1. Definition sketch of the convection cell in the high
Rayleigh number regime. The boundary layers at the walls are
permanently sheared by a large scale recirculation How which
occupies the entire space of the box. The transit time from one
side of the cell to the other is 7.
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assuming Pr = 1. The above description of the structure
of the boundary layer is consistent with the measurements
of Belmonte et al. [9] who show that the production of
the smallest scales in the layer occurs at a distance from
the plate decreasing like Ra '/ for Ra ) 10 . This is
a clear indiction of the turbulent nature of the boundary
layer where the thickness of the viscous sublayer, which
sets the size of the smallest structures in the layer scales
as 6 = v/u" with u* —u(L) —Ra'/z.

The product r7 is always larger than the critical value
~/4 for the existence of sustained nonlinear oscillations
in the range of Rayleigh numbers considered [Ra ) 4 X
10, see Fig. 3(b)]. The oscillation frequency of one
oscillator (one boundary layer) is then given by (3)

(7a)

with

and

1

0.16
[2 + a(l + c)e "'/2]

~ inc
bL2r (7c)
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FIG. 3. (a) fL2/Ir given by the present model [Eqs. (7)
with c = 0.5, solid line] compared with the experimental law
0.057Rao4o of Refs. [1,6] (dashed line) as a function of the
Rayleigh number Ra. (b) The product rr on the range of
Rayleigh numbers considered. rr is always larger than or/4
(horizontal line), the minimum value for the amplitudes A(t)
and B(t) to display sustained oscillations in phase opposition.

In the form of Eqs. (7), together with (4) and (6), the
nondimensional frequency fL /tr is a function of the
Rayleigh number Ra only. It is compared to the exper-
imental law fL /tr = 0.057Ra " in Fig. 3(a). Since not
only the trend but also the absolute values of the frequen-
cies are predicted with a good precision, the fit is, consider-
ing the simplicity of this model, excellent. The oscillation
frequency f is essentially proportional to the inverse of the
transit time 7., which decreases with Rayleigh number like
Ra '/ [Eq. (4)]: The period T represents a little bit more
than five transit times L/u(L). However, the expression of
f incorporates correcting factors involving the growth rate
r The gr.owth rate increases slightly faster than u(L)/L
with increasing Ra via its sensitivity to the thickness of
the viscous sublayer 6 —Ra '/, whose contribution to
6 is mostly sensitive at moderate Rayleigh numbers [up to
Ra = 109, see Fig. 3(b)]. As a consequence, through the
exponential factor in the expression of the period T, the
dependence of fL /tr on Ra bends slightly towards a de-
pendence less severe than Ra'/ at moderate Ra and thus

imposes a slight deviation to the exponent 2 on the fit by a
unique power law on the whole range of Rayleigh numbers

(7 = 0.49).
The interpretation of the onset of low frequency oscil-

lations, in phase opposition between the top and bottom
boundary layers of high Rayleigh number convection cells
provided in this paper, is substantially different from the
ones proposed up to now [1,11,12]. It amounts to a car-
icature of the convection box by a set of two oscillators
(the boundary layers), coupled by a slow, large-scale re-
circulation How. This convective fIow plays a crucial role
in the origin of the oscillatory pattern by the time delay
that it imposes on the propagation of the coupling between
the oscillators [7]. By its generality, this model is a useful
tool to understand the origin of antisymmetric oscillations
as a result of the coupling of shear instabilities by a sym-
metric recirculation zone. This is, in particular, the case
for the problem of the Benard-Karman vortices alterna-
tively (in phase opposition) shed from the recirculation
zone in the wake of a cylinder [13,14]. The application
of formula (3) with the appropriate parameters r and r in-
deed leads to a Strouhal number 5, = fD/u, where D is
the diameter of the cylinder and u the incoming velocity,
close to 0.2 [15]. In that case, the secondary maximum of
the velocity fluctuations in the shear layers bordering the
recirculation zone immediately downstream from the ob-
stacle should be detectable at moderate Reynolds number.

I have appreciated several discussions with B.Castaing,
C. Clanet, Y. Couder, E. Gledzer, and Y. Pomeau on this
and related topics.
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