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Atom Optics Realization of the Quantum 6-Kicked Rotor
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We report the first direct experimental realization of the quantum &-kicked rotor. Our system consists
of a dilute sample of ultracold sodium atoms in a periodic standing wave of near-resonant light that
is pulsed on periodically in time to approximate a series of delta functions. Momentum spread of the
atoms increases diffusively with every pulse until the “quantum break time" after which exponentially
localized distributions are observed. Quantum resonances are found for specific values of the pulse

period.

PACS numbers: 05.45.4+b, 32.80.Pj, 42.50.Vk, 72.15.Rn

The classical kicked rotor or the equivalent standard
mapping is a textbook paradigm for Hamiltonian chaos
[1]. The quantum &-kicked rotor (QKR) has played an
equally important role for the field of quantum chaos, and
a wide range of effects have been predicted [2]. In this
Letter we report the first direct experimental realization
of the QKR, and the first observation of the onset of
dynamical localization in time, the quantum break time,
and quantum resonances. Our system consists of a sample
of ultracold sodium atoms exposed to a one-dimensional
spatially periodic potential that is pulsed on periodically
in time. The control of experimental parameters enables
a quantitative comparison to theory and opens up many
possibilities for future studies.
To describe our system we begin with a two level atom
(transition frequency wg) interacting with a standing wave
of near-resonant light (frequency wy). For sufficiently
large detuning 8, = wo — wy (relative to the natural
linewidth), the excited state amplitude can be adiabatically
eliminated. This leads to a conservative Hamiltonian
for the ground state H = p2/2M — (hQcsr/8) cos2ky x,
where the effective Rabi frequency is Qg = 0?/6;
and k; is the wave number. ({)/2 is the resonant Rabi
frequency, proportional to the square root of the standing
wave intensity.) We now assume that the potential term
in the Hamiltonian is multiplied by f(¢), a train of N
pulses with unit peak heights and period T. The nonzero
pulse widths lead to a finite number of resonances in the
classical dynamics [3], which limits the diffusion resulting
from overlapping resonances to a band in momentum.
However, by decreasing the pulse duration with constant
area, the width of this band can be made arbitrarily large,
approaching the &-function pulse limit. We illustrate
this by considering a train of Gaussian pulses. The
Hamiltonian is given by N
H = p%/2 — kcosgp D e 7m/2 (1)

n=0
where the scaled units ¢ = 2k x, p = k. T/M)p,
t'!=1¢/T, and H' = (4k£T2/M>H (primes have been
dropped); T is the spacing between the pulses; « is the
pulse width; and k = Qcrw,T? where w, = hki/2M
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is the recoil frequency. In the quantized model ¢ and
p are the conjugate variables satisfying the commutation
condition [¢, p] = ik, where £ = 8w, T.

In these units, the time dependent potential (for an
infinite train of pulses) can be rewritten as a discrete
Fourier series, leading to

H =

[,
|
ﬁ
3
Q
»
M

g 2malr cos(¢p — 2mrt).

)
The resonances are located at p = d¢/dt = 27rr and
the widths of successive resonances fall off because
of the exponential factor, thus defining the borders to
diffusion as Kolmogorov-Arnold-Moser curves (quasi-
integrable behavior). The falloff is governed by the pulse
width, parametrized by «. In the limiting case of zero
width such that the area under the pulse remains fixed,
i.e., @ — 0,k — o such that ak remains finite, all the
Fourier weights are equal and using the Poisson sum rule,
one gets H = p?/2 — kcos¢p > __,, 8(t — n), which is
the kicked rotor with classical stochasticity parameter
k = 27 ak. Note that the falloff in « is affected by
the temporal pulse shape though « in the dominant central
region depends only on the integrated area of the pulse.
The experimental study of this problem proceeds from
the basic system used previously to study dynamical
localization in a spatially modulated standing wave [4—
6]. The experiments are performed with ultracold sodium
atoms trapped and laser cooled in a room temperature,
UHV magneto-optic cell trap (MOT) [7]. A magnetic
field gradient of 10 G/cm for trapping is provided by a
pair of anti-Helmholtz coils. Residual magnetic fields
are nulled by three-axis Helmholtz coils which surround
the quartz envelope. A stabilized single-mode dye laser
(L1) at 589 nm, pumped by an argon ion laser, is used
for cooling, trapping, and detection of the sodium atoms.
The main beam from this laser passes through a resonant
LiTaO5; electro-optic phase modulator which is driven
at 1.712 GHz. This imposes 15% rf sidebands on the
laser, and prevents optical pumping of the sodium atoms
into the F = 1 ground state during the cooling stage.
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The beam then passes through an 80 MHz acousto-optic
modulator (AOM1) which is used as a shutter and to
stabilize the intensity fluctuations of L1 at the trap to
approximately 1%. After AOMI the light is coupled into
a single-mode polarization-preserving fiber. This beam is
servolocked at a detuning of 20 MHz to the red of the
(3812, F = 2) — (3P32, F = 3) transition at 589 nm.
The output of the fiber is collimated to a diameter of 2 cm
and split into three pairs of counterpropagating beams.
They are polarized in a standard o+ — o~ configuration,
and are aligned to overlap orthogonally in the center of
the magnetic field gradient in order to establish the MOT
molasses. Approximately 10° atoms are trapped within
a Gaussian distribution of position (o = 0.17 mm) and
momentum (o = 4.6hk;). After trapping and cooling,
the trap is turned off. The rf sidebands are turned off
15 wus before the light and magnetic field gradient are
shut off, in order to pump the atoms into the F = 1
ground state. The interaction potential is provided by
a second stabilized single-mode dye laser, L2 (pumped
by the same argon ion laser). The light from L2 passes
through a fast 80 MHz acousto-optic modulator that has
a 25 ns rise time and controls the pulse sequence. The
beam is spatially filtered, aligned with the trapped atoms,
and then retroreflected from a mirror outside the vacuum
chamber to create a standing wave (beam waist 1.2 mm).
The phase stability of this setup was measured in optical
homodyne to be better than 125 mrad for an interaction
time of 100 ms. A fast photodiode detects the pulse
train which is digitized, as shown in Fig. 1, and stored
in the computer. Each pulse is typically non-Gaussian
and the integrated area is used in the comparison with
theory. The pulse period, duration, and number of pulses
in a burst are variable parameters in the experiment.
The probability of spontaneous scattering is below 1%
per pulse for the data presented. The detection of
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FIG. 1. Digitized temporal profile of the pulse train measured

on a fast photodiode. The vertical axis represents the total
power in both beams of the standing wave. f(¢) and Qg are
derived from this scan.

momentum is accomplished by letting the atoms drift
in the dark for a controlled duration (typically 2.0 ms),
after which the trapping beams are turned on in zero
magnetic field, forming an optical molasses [7] which
freezes the position of the atoms. The region of laser
beam overlap in the vacuum is approximately 8 cm3,
which defines the usable volume for atom detection
via this “freezing molasses.” The atomic position via
fluorescence imaging is then recorded in a short (10 ms)
exposure on a thermoelectrically cooled charge-coupled
device. The final molasses distribution and the free-drift
time enable the determination of the total momentum
after the initial MOT spatial distribution is deconvolved.
In each measurement sequence we alternate between a
measurement of the initial MOT momentum distribution
and a measurement of the momentum distribution after
exposure to the train of pulses.

We show results for Qerr/27 = 75.6 MHz and T =
1.58 us. Each pulse has a rise and fall time of 25 ns
and a temporal full width at half maximum of 100 ns.
The effective impulse corresponds to k = 11.6 (with an
experimental uncertainty of 10%) and the corresponding
classical phase portrait is shown in Fig. 2 with the
classical boundary at p/2kk; = 45. The scaled Planck’s
constant £ equals 2.0. For these experimental parameters,
the theoretical estimate of the localization length & (the
1/e point of the momentum distribution) is 8.3 in units
of 2hk;. The falloff in x over the localization length is

FIG. 2. Classical phase portrait for the pulsed system using a
train of Gaussians to represent the experimental sequence. The
integrated area under a single pulse is taken to be the same as
in the experiment. The standing wave has a spatial rms value
of Qe = 75.6 MHz, T = 1.58 us, and @ = 0.027 leading to
x = 11.6. Note that a small intensity variation due to spatial
overlap of atoms and laser profile results in a somewhat smaller
« than that at peak field.
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small, =15%. Thus, the experimental conditions are in a
regime well described by the QKR.

The momentum distributions were measured for an
increasing number of kicks (N), with the pulse height,
period, and pulse duration fixed. The line shapes shown in
Fig. 3 clearly evolve from an initial Gaussian distribution
at N = 0 to an exponentially localized distribution after
approximately N = 8. We have measured distributions
out until N = 50 and find no further significant change.
Since the atoms in the ensemble are independent, these
results should represent the single-atom wave function.
The growth of {(p/2#k;)?)/2 as a function of the number
of kicks was calculated from the data and is displayed
in Fig. 4. It shows diffusive growth initially until a
quantum break time, after which dynamical localization
is observed [2]. Though not shown here, classical and
quantum calculations both agree with the data over the
diffusive regime. Beyond the quantum break time, the
classical energy continues to increase diffusively while
the measured line shapes stop growing, in agreement with
the quantum prediction. The observed line shape is shown
(Fig. 4 inset), and is clearly exponential. These results
are the first experimental confirmation of the quantum
break time.

Between kicks the atoms undergo free evolution for a
fixed duration. The quantum phase accumulated during
the free evolution is e iP'T/2Mh — ,=ip*/2k — ,=in’k/2
where n labels the plane-wave basis. A quantum reso-
nance occurs when k/2 (= 4w,T) is chosen to be a ra-
tional multiple of 277. We have scanned T from 3.3 to
50 us and find quantum resonances when the quantum
phase is an integer multiple of 7 [8]. For even multiples,
the free evolution factor between kicks is unity, and for
odd multiples, there is a flipping of sign between each
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FIG. 3. Experimental time evolution of the line shape from

the initial Gaussian until the exponentially localized line shape.
The parameters are the same as Fig. 2 with & = 2.0. The break
time is approximately 8 kicks. Fringes in the freezing molasses
lead to small asymmetries in some of the measured momentum
line shapes as seen here and in the inset of Fig. 4. The vertical
scale is measured in arbitrary units and is linear.
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kick. Quantum resonances have been studied theoreti-
cally, and it was shown that instead of localization, one
expects energy to grow quadratically with time [9]. This
picture, however, is only true for an initial plane wave. A
general analysis of the quantum resonances shows that for
an initial Gaussian wave packet, or for narrow distribu-
tions not centered at p = 0, the momentum distribution
is actually smaller than the exponentially localized one,
and settles in after a few kicks [10]. Our experimental
results are shown in Fig. 5. Ten quantum resonances are
found for T ranging between 5 us (corresponding to a
phase shift of 77) and 50 us (107) in steps of 5 us. The
saturated momentum line shapes as a function of 7 are
shown in Fig. 5(a). The narrower, nonexponential pro-
files are the resonances between which the exponentially
localized profiles are recovered. The time evolution of the
line shape at a particular resonance is shown in Fig. 5(b)
from which it is clear that the distribution saturates after
very few kicks. We also observe the difference in early
time evolution (2 — 3 kicks) when & /2 equals odd multi-
ples of 7, arising from the alternating sign between kicks.
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FIG. 4. Energy {(p/2kk;)?)/2 as a function of time. The
solid dots are the experimental results. The solid line shows
the calculated linear growth proportional to the classical
diffusion constant «?/2. The dashed line is the saturation
value computed from the theoretical localization length &. The
inset shows an experimentally measured exponential line shape
on a logarithmic scale which is consistent with the prediction
& = k%/4R ~ 8.3,
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FIG. 5. Experimental observation of quantum resonances:

(a) Occurrence as a function of the periodicity of the pulses.
The surface plot is constructed from 150 line shapes measured,
for each T, after 25 kicks. This value of N ensures that the
line shapes are saturated for the entire range of 7T shown.
At resonance, the profiles are nonexponential and narrower
than the localized shapes which appear off resonance. Note
that the vertical scale is linear. (b) Time evolution of a
particular resonance (7" = 10 us corresponding to k = 41r).
The parameters a and .s/27r are the same as in the other
figures.

In our system the canonical variables are position and
momentum, as opposed to angle and angular momentum
for the quantized rotor. The observed effects reported
here are identical for both systems. However, by adding
noise terms that break the spatial periodicity, the quantum

dynamics can be substantially different than for a kicked
rotor [11,12]. This can be achieved experimentally by
adding a standing wave that has a different, incommensu-
rate periodicity. We will study the effects of “symmetry
breaking” potentials in the context of noise induced delo-
calization, and localization in two and three dimensions.
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FIG. 5. Experimental observation of quantum resonances:
(a) Occurrence as a function of the periodicity of the pulses.
The surface plot is constructed from 150 line shapes measured,
for each T, after 25 kicks. This value of N ensures that the
line shapes are saturated for the entire range of T shown.
At resonance, the profiles are nonexponential and narrower
than the localized shapes which appear off resonance. Note
that the vertical scale is linear. (b) Time evolution of a
particular resonance (7 = 10 us corresponding to k& = 4).
The parameters « and (/27 are the same as in the other
figures.



