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Magnetic Control of Optical Spatial Solitons
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Calculations involving the propagation of a pair of bright, spatial solitons in magneto-optic
waveguides are presented. It is shown that an external magnetic field can force bright solitons
from a state of attraction to each other into isolation from each other. It is also shown that TE-
TM conversion, a typical magneto-optic phenomenon, can be controlled by the input power. Finally,
an elegant Hamiltonian analysis of the critical points of the phase space is used to prove that various
stable, or unstable, regimes can be established.

PACS numbers: 42.50.Rh
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where n is the linear refractive index of the magneto-
optical material. In the system selected here, the electric
field components E and Ey couple to each other through
the parameter Q. Since the waveguide is weakly guiding,
the longitudinal electric field component E, satisfies the
inequality IE, I

« IE, I, IEyl, so this is the best case to
choose for the moment. More strongly guiding situ-
ations can be envisaged in future investigations, however,

It has long been asserted in the literature that optical-
magnetostatic wave interactions ought to be competitive
with the commercially available acousto-optic devices [1],
with the added advantages of higher (=20 GHz) opera-
tion coupled to tunability supplied by the applied mag-
netic field. This tunable magneto-optic effect has never
been introduced into nonlinear optics, so this paper breaks
new ground in this respect. Experimental verification of
the results predicted here should be within reach, because
garnet films are now the products of a mature fabrication
technology. Indeed exploiting magneto-optical properties
will produce impressive integrated optical units [1],when
compared to those based upon GaAs or LiNb03 technolo-
gies. In view of this development, it is exciting to inves-
tigate integrated optical device possibilities that use not
only magneto-optic interactions but nonlinearity as well.
Even now, molecular beam epitaxy permits the growth
of magnetic garnets onto GaAs and other III-V materi-
als. Also yttrium iron garnet (YIG) is transparent [1] at
=1.1 p, m, so the operational wavelength is also attractive.
Figure 1 shows the waveguide structure under investiga-
tion. The propagation of the electromagnetic beams is
along the z direction, confinement by weak guiding oc-
curs in the y directions, and nonlinearly constrained
diffraction [2—4] takes place in the plane of the nonlinear
film, in the + x directions. The waveguide structure con-
sists of a plane nonlinear, nonmagnetic film, bounded by
semi-infinite (thick), identical, longitudinally magnetized
magneto-optic material that has a dielectric function [5]
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= ~O~L(IE I
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where f = 4~yxyz/pxzzx A' =
4 +zxxx and ~/tjt, t is the

familiar fourth-rank tensor describing the nonlinearity.
Note f = 0, 3, 1 for thermal, electronic distortion, or
molecular orientational nonlinear mechanisms, respec-
tively. If x, y, z are measured in units of ro/c, co is the
angular frequency and c is the velocity of light in vacuo,
the electric field vector is K = (E,Ey)e ' ', then the
equation for Ezy is

V'E +(n +An)E =0, J=x3' (3)

where An~ are the perturbations to the linear refractive
index n in various parts of the waveguide structure. From
Eqs. (1) and (2)
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FIG. 1. The waveguide structure. Ho is the applied magnetic
field needed to activate the magneto-optic material. Both the
cladding and substrate are semi-infinite.

for which the polar (E, coupled to E,) or transverse
(Ey coupled to E,) magneto-optic cases will be just as
important. The part of the waveguide structure that
becomes nonlinear is assumed to develop a Kerr type of
nonlinearity so that the third-order nonlinear polarization
has the following x and y components [3,4]:
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~ I&.l'+ I&yl'+ fl E' E,' —I&yl' I, lyl ~ d,
n X E,,

+nmP Iyl)d,
(4)

with a corresponding form for Any I. n Eqs. (3)
and (4), the electric field components are F y

=
I A, y(y)B, y(x, y) exp(icuPz/c), where P is a common
effective index, A, y(y) are the unperturbed modal

fields, I is a normalization factor, and B, y are slowly
varying amplitudes. After applying standard, first-order,
perturbation theory [3,4], the evolution equation for B, is

with
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There is also an equation for By in which parameters Q3,
Q2, and Q~ appear. Note that P, y are the wave numbers
of the solution of the unperturbed TE, TM equations so
that v is a birefringence parameter. It is not difficult to
get expressions for the linear modal field distributions A
and Ay and to show that Ax —= Ay, for any typical data.

For a spatial soliton beam of natural width Do, the dif-
fraction length is LD = 2PDpai/c, so z will be
scaled with LD and x will be scaled with Do, i.e.,
the trans formations x ~ Dox', z ~ LD z' will be
affected. The post-scaling factors in Eq. (5) are
(cu /c )DpQ~, Q4, (cu /c )Dpv, and (~/c)DpQ2.
Typically [2—4], Lty —= 2.2 mm, Dp = 8.5 p, m, and

Q
—= 1 X 10 so that, for a wavelength of interest,

(cu /c )DpQi —= 0.4, Q4 =— 10 ", (co /c )Dpv = 0.1,
and (cu/c)DpQ& —= 10 . Hence only the magneto-optic
term involving Qt and the birefringence term involving
v are of any significance. Even then, the birefringence
term is a consequence of waveguide design and can
be designed out of the problem, if it is so desired. A
nonlinear length LNL = (4Pc/n'cu) [amplitude] can
also be used and a final transformation P~ z = NB, y can
be made, where N = QLD/LNL. After dropping the
dashes on x and z, for ease of notation, and adopting the
definitions (to /c2)DpQ~ ~ Q~, (cu /c )Dpv ~ v this
nonlinear magneto-optic problem can be formulated in
terms of the coupled equations (j = 1,2)

There are many distributions experimentally possible
for Qi. For instance, the simplest form is Qi(x) = const,
but, more generally, it is also possible to have Qi( —x) =
Qi(x), or Qi( —x) = —Qi(x), where Q~(x) is a periodic
function of x. Such periodicity could be created by mak-
ing a magneto-optic layer from magnetized domains that
are alternating in sign (magnetization direction). At this
stage the Qi that is used in Eq. (5) has been transformed
to (cu /c )DpQi for use in Eq. (6). Specifying Qi, there-
fore, implies a choice of cu, Dp, n, Q, and 2d, the wave-
guide thickness. As stated earlier, Q is typically 10 for
YIG, and that material has a saturation magnetization of
1750 G. It is also important to remember that this theory
applies to single mode waveguides, for which the thick-
ness will be the order of 2 p, m.

Figure 2 shows an example of the magneto-optic ef-
fect for the case when v = 0 and there are two beams
that are, initially, in phase. For Qi 4 0, it is well known
that two in-phase solitons will be trapped by each other.
Figure 2, however, shows what happens to this interac-
tion if an applied magnetic field is switched on. For this
example, Qi = —0.4 sin(vrx/2)/I sin(~x/2)l, i.e. , a peri-
odic square function. Collision is shown to be prevented.
In effect, the magnetic field creates a potential well in
which the beam can be located. A closer inspection re-
veals that the output beams are mixtures of TE and TM
polarizations, even though the initial polarization is purely
TE or TM. This TE-TM conversion possibility is well
known in linear magneto-optics, but nonlinearity changes
the length scale and, consequently, changes the rate of TE-
TM conversion. Figure 3 shows a simpler way in which
this conversion can proceed for constant Q. Initially there
is only TE polarization and there is no TM polarization.
At a certain propagation distance L, all the TE energy is
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FIG. 2. Interaction of two solitons: P~ = sech(x —4), P2 =
sech(x + 4), under the influence of an applied magnetic field.
Qi = —0.4 sin(m. x/2)/( sin(7rx/2)~ and v = 0.

converted into the TM mode. After propagating another
distance L all the energy is converted back to TE again.
This pattern is repeated, periodically, every 2L. In fact,
an analytic estimate of the period 2L can be rather easily
obtained from a variational principle [3,4,6]. For simplic-
ity, it will be applied here under the assumption that the
beam width is a constant during the process of conver-
sion. This assumption has been previously used [6] and
has been proved to give good qualitative results. This
assumption is also supported by Fig. 3, which contains
the true polarization dynamics of the beams. The behav-
ior of the beams can be represented quite well, therefore,
by choosing the trial functions pt = zlt sech(x) exp(i0()
and pz = iI2sech(x) exp(i02), where rii, zI2 are ampli-
tudes of the TE and TM waves and 0], 02 are their respec-
tive phases. The beam widths are normalized to unity.
Following the same variational technique as Ref. [6] the
two evolution equations for the phase and amplitude

where 0 = 02 —0), rI) + zI2 = const, U =
(zlzz

—zI()/
2 2= 2 2

(nz + ni). C = (nz + ni)z. and Qo = („+„)f' Qi &&

sech xdx. If a pure TM wave is launched at the input

[zlt(g = 0) = 0, zI2(g = 0) = I], a simple solution
to the coupled evolution equation is F2 = cos (Qog/2),

sin (Qo g/2). These functions repeat at Qo go
27r. The periodic length zo is therefore zo = 2m /
f'„Q, sech2xdx. Note zo is power dependent because
it is important to realize in this formulation that Q(
is, effectively, (co /c )DriQ(. Hence a change in the
input beam width Dp causes the period of the TE-TM
conversion to change. Accordingly, a polarization filter,
placed at the end of the waveguide, will see a variation
in the output. Since the beam width and the total
power of a spatial soliton bear a certain relationship
to each other, a polarization conversion device, con-
tinuously tunable by the total input power, can be
made from the application of an applied static mag-
netic field to a magneto-optic guide. The predicted
Qp is precisely the period in the simulation of Fig. 3,
showing that a variational analysis with more degrees
of freedom would not give more information in this case.

If the initial condition is zI) = zI2 = I/$2(1 —f), 0 =
vr/2, Eqs. (7) and (8) show that this initial condition is

stationary. In fact, this initial condition corresponds to an
exact vector soliton solution of Eq. (6), for the case v =
0, i.e. , Pi = ~i/2 = I/$2(1 —f) sechx exp[i(1 -+ Q()z].
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FIG. 3. Intensity plot that shows the conversion of TE to TM
polarization for Q&

= 0.4. Only the TE part is plotted here.
The propagation is from z = 0 to z = 11 cm. The transverse
direction is —68 ~ x ~ 68 pm. The numerical value of the
period is zo = 1.721 cm. The period predicted variationally is
zo = 1.728 cm.
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FIG. 4. Variation of stationary value Uo with Qo sin Oo, for
v = 0.05. a is an unstable point and b is a stable point.
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Eqs. (9) and (10), is shown in Fig. 4 for v = 0.05. In
the neighborhood of the critical point,

8Do 0

ORLD

BU BH 8 H

Bg BO2 BUBO
(O —Oo) + (U —Uo),

80 BH BH
Bf BUBO BU2

(O —O,) — (U —U, ) .

( 1 1 a)

(1 1 b)

Assuming that perturbations in the vicinity of a critical
point vary as e ~, then A ( 0 means stability of the

(Uo, Oo) state, while A ) 0 means it is unstable, where

( B H 'i B H'i B H
(BUSH i DU~ j Bg~) (12)

8Do 0

FIG. 5. Numerical simulations to check the stability regions.
(a) and (b) correspond to points a and b in Fig. 4.

The stability of this vector soliton solution can be analyzed
with Eqs. (7) and (8) and the analysis can also be general-
ized to v 4 0.

Specifically, for the generalized case (v 4 0), Eq. (7)
is the same but (8) needs to have —4v added to the right-
hand side. The Hamiltonian density of the system is

H =
z f(1 —U ) sin O —Qov I —U sinO + 4vU,

The stability condition determined from Eq. (12) shows
that the AB part of curve (1), in Fig. 4, is unstable, and
the BC part is stable. Curve 2 in Fig. 4 is associated
with stable (A ~ 0) solutions. The theoretical conclu-
sions have been checked by computer simulations, and
excellent agreement is obtained. Some of the results are
shown in Fig. 5. These results confirm the predicted
stable or unstable behavior, lending credibility to the ap-
proximations underpinning the mathematical analysis. Fi-
nally, the deployment of magneto-optic components in
nonlinear integrated optics should open up a completely
new range of possibilities.

This work has been supported by the UK EPSRC.

BU/Bg = BH/BO, BO/Bg = —BH/BU. (10)

The vector soliton solution corresponds to a stationary
state of Eq. (10). The latter occur whenever BU/Bg =
0, BO/Bg = 0 and these conditions occur at U = Uo,
O = Oo = ~7r/2, which is called a critical point of the
system. One example of the stationary states, using

(9)

where v' = v/(gt + ri2) and the dash on the v has been
dropped. Both U and O are functions of g and satisfy the
Hamiltonian equations
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