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Adaptive Phase Measurements of Optical Modes: Going Beyond the Marginal Q Distribution
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In standard single-shot measurements of the phase of an optical mode, the phase and amplitude
quadratures are jointly measured, and the latter information discarded. These techniques are
consequently suboptimal. Here I suggest an adaptive scheme, whereby the phase is estimated from
the results so far and fed back to control the phase of the local oscillator so as to measure the
(estimated) phase quadrature only. I show that adaptive phase measurements can approach optimal
phase measurements for states with both low and high mean photon numbers.

PACS numbers: 42.50.Dv, 03.65.8z, 42.50.Lc

The phase P of a single mode of the electromagnetic
field is the quantity canonically conjugate to the photon
number n It i.s now generally accepted that there exists a
unique canonical probability distribution function (PDF)
for this variable [1]:

P-.(4) = TrLpF-. (0)), (1)
where F„„(@)is a positive-operator-valued measure
(POVM) [1—3] for P defined in terms of the unnormal-
ized phase states lP):

F...(e) =, le)(yl,

This PDF is guaranteed to be normalized from the
requirement on all POVMs that f dAF(A) = 1, where
A is the measurement result. Considerable work has
been done showing how this distribution can be inferred
from physically realizable homodyne measurements on an
arbitrarily large ensemble of identical copies of the system
[4]. However, this ability is not at all the same as the
ability to make canonical phase measurements. To do the
latter, one would have to make a measurement on a single
copy of the system, the result of which would be a random
variable drawn from the canonical PDF (1). There is no
known way to achieve this in general, nor is there ever
likely to be.

One practical reason for wishing to make canonical
phase measurements is for efficient communication [2].
If one encoded information in the phase of a single-mode
optical pulse (which is easy to do with an electro-optic
modulator), then one would wish the receiver to measure
that phase as accurately as possible. In a canonical phase
measurement the error in the measured phase would be
limited only by the intrinsic quantum uncertainty in the
phase [2]. Therefore it is only if a receiver could make
a canonical (or near to canonical) phase measurement
that schemes for preparing states which have minimum
intrinsic phase uncertainty [4] would be able to be fully
exploited for efficient communication.

At present, there are a number of practical (noncanon-
ical) schemes for single-shot phase measurements, all of
which give equivalent results [1]. One of these schemes

(which here stands in place of any of them) is heterodyne
detection, which uses a local oscillator highly detuned
from the system. The two Fourier components of the pho-
tocurrent record yield measurements of both quadratures
of the field [5]. These can be converted into results for the
intensity and phase, the former of which is discarded. Be-
cause half of the measurement information is useless, this
phase measurement is far from canonical. The POVM for
such standard measurements is

F..(e) = —,
'

dn F„,(y, n) . (3)

Here the heterodyne POVM Fh«(P, n) is defined in terms
of coherent states of complex amplitude A = ~n e'~:

Fh«(y, n) = ~ 'lA)(Al, (4)

where the result A (defined later) encodes both Fourier
amplitudes. In other words, the PDF for standard phase
measurements is the marginal phase PDF of the Q func-
tion Q(g, n) = Tr[pFh«(g, n)]. Such measurements
introduce significant extrinsic uncertainty into the
measurement result [1]. Thus with standard detection
techniques, states with small intrinsic phase uncertainty
offer only a modest increase in efficiency over coherent
states with the same mean photon number [2].

In this work I am proposing a new technique: adaptive
single-shot phase measurements. As I show, such mea-
surements can be much closer to canonical measurements
than standard measurements (hence the title of this Letter).
The basic idea is to measure the estimated phase quadra-
ture of the system by homodyne detection, where the es-
timate is based on the photocurrent record so far from the
single pulse. That is to say, the local oscillator phase is
continuously adjusted by a feedback loop to be in quadra-
ture with the estimated system phase over the course of
a single measurement (see Fig. 1). The first part of this
Letter explains how this estimate could be made in gen-
eral. I then present some numerical results for adaptive
phase measurements of coherent states. Finally, I present
results for a special case which can be solved analytically,
in which the adaptive phase measurement is strictly as
good as a canonical measurement.
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FIG. 1. The adaptive phase measurement scheme. Light
beams are indicated by dashed lines and electronics by
solid lines. BS denotes a 50/50 beam splitter, D] and D2
photodetectors, and SP a signal processor. The local oscillator
phase is controlled by an electro-optic modulator (EOM).

It might be thought that the second functional does not
even depend on I~0,~, but it does if the local oscillator
phase res(t) depends on I(0 t) as in adaptive measurements.
Denoting the measured values of these functionals R, and
S, , respectively, the POVM is [6]

Ft(Rt St) Po(Rt St)Gt(Rt St)

where Po(R, , S,) is a positive function defined later, and
G, (R, , S,) is a positive operator given by

G, = exp(2 Stat + Rtai) exp( ata—t)

x exp(2 S,*a + R, a). (10)

The POVM (9) is normalized as usual so that

Photodetection with a local oscillator. —An adaptive
measurement requires one to estimate the phase of the
system based on the measurement record so far. In order
to treat this, we require the quantum measurement theory
of photodetection with a strong local oscillator, over a
finite time interval. This I have derived in generality
in Ref. [6], using the recently published theory of linear
quantum trajectories of Goetsch and Graham [7]. For
simplicity, let the single mode to be measured be prepared
initially in a cavity in state p. Let the light leak out
through an end mirror with decay rate of unity. The
emitted light is sent through a 50-50 beam splitter, with
a strong local oscillator of complex amplitude P(t) =
IPIe' ') entering at the other port. The mean fields at
detectors D2, D1 are thus proportional to p ~ (a)e
respectively, where a is the annihilation operator in the
cavity mode. The signal photocurrent I(t) in the interval
[t, t + Bt) is defined in terms of the difference between
the photocounts 6N2, 6N~ at the two detectors:

+1[I~o,t)]
ittt(s) s/2I( )d—

as in Ref. [5]. It is easy to see that the mean value of this
current can be written in terms of (a) = Tr[ap] as

(I(t))=e ' (ae ' ' +a e' ') (6)

It is useful to introduce a new symbol I~0,) for the
complete photocurrent record (I(s): 0 ( s ( t) The.
quantum measurement theory we require is the POVM
for the record I~0 t) from time 0 (the time of preparation)
to time t. This gives the probability for getting the
result I~0,) given the initial state p. Note that II-O,

~
is a

continuous infinity of a real number —a very complicated
object. Fortunately, it turns out [6] that the POVM
depends only on two complex functionals of I~0 &). These
two sufficient statistics are

d R,d S,P(Rt, St) = 1,

where P(R, , S,) = Tr[pFt(Rt, S,)] is the actual PDF for
obtaining the results R&, 5, given the initial state p. By
contrast, the function Po(R„S,) in Eq. (9) can be thought
of as the ostensible PDF for R, and S, [6]. It is the
PDF they would have if dW(t) = I(t)dt were a Wiener
process [8] satisfying dW(t) = dt Explic.itly,

Po(Rt, St) = dI[0 t)PO(I[0 t))~ (Rt Pl [I[0.t)])

Po[tts)1 = gds/2m. exp[ —s~ dstts) 1.

Recovering the standard result. —The theory presented
here applies to any sort of detection with a large local
oscillator. This includes heterodyne detection for which
the local oscillator phase 4(t) cycles rapidly in time
at rate 5 » 1. In this case 5, does not depend on
I(0 t), and from (8) we find that S, ~ 0 as 5 ~ ~. The
measurement result is thus R, , which from (7) and (12)
has the ostensible statistics of the random variable

R( = e 'I e ' 'dW(s), (14)

where dW(t) is a Wiener increment. Being the (continu-
ous) sum of Gaussian random variables, R, must be
a Gaussian random variable. The rapid phase rotation
at rate 6 ~ ~ ensures that is has no preferred phase.
Writing A = R, it is easy to show from Eq. (14) that
the expected value of IA I

is 1. These three constraints
define the ostensible PDF for the final result A at t = ~:

Po"(A) = rr 'exp( —IAI ). (15)

x 6 (S, —+2[I[0, )])

Here Po(I(0 t)) equals the continuously infinite product of
ostensible distributions for each instantaneous current I(s)
over each interval [s, s + ds)
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C (t) = pt(R~, St) + vr/2. (20)

Another way of looking at this is that the receiver attempts
to make a null measurement of phase. At small t, the
receiver has very little information. Thus initially y&,
and hence 4(t), varies wildly in time. This has the
same effect as the rapidly cycling 4(t) in heterodyne
detection: all quadratures are sampled equally. As more
information is acquired the phase estimate improves and

Substituting this into Eq. (9) and using the fact that
lim, exp( —atat) = l0) (Ol yields the effect

F""(A) = 7r e " exp(Aat) l0) (Ol exp(A a) . (16)
A little operator algebra confirms that this is identical
to the previously stated result (4). The natural phase
estimate is thus P = argA. This can be understood
as follows. The actual mean photocurrent (6) has two
counterrotating complex terms. The rotation of the kernel
of the integral (7) reinforces that of the second term
(which thus averages to zero) but cancels that of the
first term, leaving (A) = fo(I(t))e' ' ' dt = (a&. This
result assumes a rapidly varying 4(t); in general the
second functional (8) is also required to estimate P.

Estimating the phase. —Consider a state po with a
phase distribution centered around zero. Such a state
could be used for communication by encoding a number

p H [0,2~) as a phase shift by the unitary operator
U(p) = exp( —ialap). The PDF for the receiver to get
results R„S, for a given p is thus

P(Rt, Stlp) = Tr[U(p)poUt(q&)F, (R, , S,)]. (17)
The receiver, who wishes to estimate the phase cp, can use
Bayesian statistics [3] to find the posterior PDF

P(plR, , S,) = 3V P(R, , S, lp)P „. ,(p), (18)
where Pz„„(p) expresses the prior knowledge the re-
ceiver has about p, and 3V is a normalization factor.
To be unbiased, we assume that the receiver knows po
but has no idea about p, so that the prior PDF Pz„„(p)
is flat [3]. Then it follows from Eq. (9) that at time t
the maximum likelihood estimate (MLE) p, for p is that

p, (R, , S,) which maximizes the likelihood function

L, (~,) = Trl:poU'(~, )G, (R, , S,)U(~,)].
The MLE is the most convenient estimate of phase
because, unlike other estimates (such as the mean), it does
not suffer from ambiguity due to the cyclic nature of cp.

Adaptive measurements. —The above result for the
MLE p, of the phase is true no matter how the local
oscillator phase 4(t) varies. Thus we can use this MLE
which emerges from the processing of the signal Ito, ~

in a feedback loop to control iIi(t) as shown in Fig. 1.
The suggestion here is that the local oscillator phase be
controlled to be in quadrature with the current estimated
phase of the system, so that in the next instant of time
the apparatus will make a homodyne measurement of the
estimated phase quadrature. Explicitly,

FTLA
can

approaches the value which is finally used as the result of
the measurement, P = p, (R, S ).

In order to understand this process better, it is helpful
to look at an example where the function L,(p, ) has a
relatively simple form. If po is the coherent state lr) (r l

with r real, then one finds that one should maximize

InL, (p, ) = Re[r S, e '+' + 2rR, e'~" ] + c, (21)
where c is a constant (independent of p, ). If r » 1 then
for short times t ~ r the MLE cp, is approximately
equal to argR, . This is because for short times lR, l-
Qt, while S, « t due to the rapid variation of 4(t).
This estimate (argR, ) is the same as that for heterodyne
detection, as expected. For longer times the estimated
phase settles down, 5, becomes significant, and hence
j&, becomes approximately constant at arg~S, (with the
ambiguity resolved by the phase of R, ). During this stage
the measurement is effectively a homodyne measurement
of the phase quadrature.

Even with the relatively simple form (21) of L, (y, )
for coherent states, it is not possible to solve the scheme
analytically. Rather, an ensemble of stochastic numerical
simulations is needed. The best way to do this is by using
the theory of nonlinear quantum trajectories [5,9]. In this
particular case the system state need not be simulated;
it is simply lre'~ ' ). From this, the photocurrent is
generated with the correct actual statistics by

I(t) = e 'l 2r cos[q —C&(t)] + g(t), (22)
where g(t) is Gaussian white noise [8]. For each simu-
lation, R, and S, are calculated and used in Eqs. (20) and
(21), and the final MLE P = p stored. An ensemble
size of 100 for r = 50 gave the mean squared difference
between actual and estimated phases to be

F.[(P —q)']ad, p,
——(1.0 ~ 0.2) x 10 '. (23)

This is half the variance of the standard result of (2r2)
[2]. Within statistical error, it is equal to the error of
a canonical phase measurement, (4r ) ' [2]. This is
not unexpected, since for r » 1 the vast majority of
the measurement time is spent in an effective homodyne
measurement of the phase quadrature. For states with
smaller intrinsic phase uncertainty than coherent states
the advantage of adaptive measurements over standard
measurements would of course be more dramatic.

An analytic example. —There is one case in which the
adaptive measurement may be treated analytically: if the
system is known to contain at most one photon. This
could occur if the cavity mode were excited by a single
atom, in which case the phase of the field is equal to
the original phase of the dipole of the atom. Since the
harmonic oscillator truncated at one photon is equivalent
to a two-level atom, the letters TLA will be used to
distinguish this case. First I consider canonical and
standard measurements. Projecting (2) into the subspace
spanned by (l0&, l I&] yields the canonical POVM

1
ly& = 10& + e'~11&. (24)

4589



VOLUME 75, NUMBER 25 PH YS ICAL REVIEW LETTERS 18 DEcEMBER 1995

t —s/2
R, = 41 —e 'exp i dW(s) . (28)

o 1 e

For t ~ ~ one finds A = R given by
I(r)dr

A = exp(iP),
p Qe' —1

This P is ostensibly a completely random phase (because
the integrand diverges as t ~ 0), so Po(@) = (27r)
Equation (29) shows that the measurement result contains
no intensity information, only phase information, as
desired. Indeed, substituting these results into Eq. (9)
with a replaced by ~0) (1~ gives the POVM for @
F,d, z, (@) = (2') ' exp(e'@)1)(0[)[0)(0(exp(e '@~0)(1[)

= F;.'. (@) (30)
Thus for the two-level atom (or equivalently for a field
with at most one photon), a simple adaptive measurement

(29)

Similarly, the standard POVM (3) becomes

That is to say, the standard technique has an efficiency of
jest/2 = 88%, in the sense that the same POVM would
arise from a canonical measurement that worked 88% of
the time, and that gave a random answer on the interval
[0,2~) the other 22% of the time.

Because of the isomorphism between the at-most-one-
photon field and the two-level atom, it is permissible
to replace the annihilation operator a with the lowering
operator ~0)(1~ in all operators. One thus finds the very
simple expression for the likelihood function (19):

L, (p, ) = Re[2(l~po~O)R, e'"'] + c', (26)
where c' is a constant. This does not depend on S„so for
any po which has a mean phase of zero (i.e., for which
(1~po~O) is real and positive), one has simply cpt = argR, .
Thus using Eq. (20) the local oscillator phase is set to
be 4(t) = argR, + ~/2. The integral equation R, =
+i[I[o,l] (7), where I[a,) has the ostensible distribution
(12), is thus equivalent to the following Ito stochastic
differential equation:

dR, = e ' i(R, /(R, ()dW(t), (27)
where as before dW(t) = I(t)dt is ostensibly a Wiener
increment. Using the Ito calculus [8] for ~R~ and argR
quickly yields the solution

scheme can produce a canonical measurement of the
phase, which is significantly better than the best result
with no feedback (25).

The results presented here show that adaptive phase
measurements can be close to canonical phase measure-
ments for states with both low and high photon numbers.
The key idea is to optimize the measurement at each in-
stant of time by using the MLE of the phase to control
the local oscillator phase (20). It should be understood
that I have not shown that this is the globally optimal
algorithm. Also, the present algorithm assumes the re-
ceiver has complete knowledge of the initial state except
for its phase. Alternative situations will be considered
in future work. The important result from this paper is
that by using feedback to create an adaptive phase mea-
surement, a great improvement over standard techniques
may be found. If there is at most one excitation in the
system, the adaptive technique is as good as a canonical
one. Since the feedback requires only electronics and an
electro-optic modulator, it should be experimentally fea-
sible, and would represent a fundamental methodological
advance over standard phase measurements.
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