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Numerical Evidence for the Observation of a Scalar Glueball
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We compute from lattice QCD in the valence (quenched) approximation the partial decay widths of
the lightest scalar glueball to pairs of pseudoscalar quark-antiquark states. These predictions and values
obtained earlier for the scalar glueball's mass are in good agreement with the observed properties of
fJ(1710) and inconsistent with all other observed meson resonances.

PACS numbers: 12.39.Mk, 12.38.Gc, 13.25.Jx

It is generally believed that QCD predicts the existence
of glueballs, resonances composed mainly of chromoelec-
tric field without a valence quark-antiquark pair, occur-
ring either as physical particles by themselves or in linear
combination with states which do include a valence quark
and antiquark. Whether such states have been identified
so far in experiment remains ambiguous. A crucial prob-
lem is that the properties of glueballs are not expected
to be drastically different from the properties of fIavor
singlet bosons including valence quarks and antiquarks.
Thus the identification in experiment of states with large
glueball contributions is difficult if not impossible in the
absence of a reliable evaluation of the properties predicted
for glueballs by QCD. We believe the lattice formulation
of QCD provides the most reliable method now available
for determining QCD's predictions for the masses and de-
cay couplings of hadrons.

Some time ago we reported [1] a value of
1740(71) MeV for the valence (quenched) approximation
to the infinite volume continuum limit of lattice QCD
predictions for the mass of the lightest scalar glueball.
This result was obtained using ensembles of 25000 to
30000 gauge configurations on each of several different
lattices. An earlier independent valence approximation
calculation [2], when extrapolated to the continuum limit
[3] following Ref. [1],yields 1625(94) MeV for the light-
est scalar glueball mass. This calculation used several
different lattices with ensembles of between 1000 and
3000 configurations each. If the two mass evaluations are
combined, taking into account the correlations between
their statistical uncertainties arising from a common pro-
cedure for converting lattice quantities into physical units,
the result is 1707(64) MeV for the scalar glueball mass.
Both the mass prediction with larger statistical weight and
the combined mass prediction are in good agreement with
the mass of fJ(1710) and are strongly inconsistent with
all but fp(1500) [4] among the established flavor singlet
resonances which could be scalars. For fp(1500) the
disagreement is still by more than 3 standard deviations.

The valence approximation, used in the mass calculation
of Refs. [1,2], may be viewed as replacing the momentum
and frequency dependent color dielectric constant arising
from quark-antiquark vacuum polarization with its zero-
momentum, zero-frequency limit [5]. This approximation

is expected to be fairly reliable for long-distance properties
of hadrons. For example, the infinite volume continuum
limits of the valence approximation to the masses of eight
low-lying hadrons composed of quarks and antiquarks dif-
fer from experiment by amounts ranging up to 6% [6]. A
6% error in the glueball mass would be 100 MeV and, ac-
cording to an adaptation of an argument giving a negative
sign for the valence approximation error in f [6], the sign
of this error is also expected to be negative. Alternatively,
the contribution to this error arising from ignoring glue-
ball mixing with states carrying a valence quark-antiquark
pair we believe will be negative with magnitude less than
60 MeV. This estimate follows, in part, from an exami-
nation [3] of the splittings between related isosinglet and
isovector meson pairs with the same one unit of orbital an-
gular momentum as scalar quark-antiquark states. Thus
the scalar glueball in full QCD should lie within 100 MeV
above the valence approximation mass, and correcting the
error in the valence approximation should not drastically
change the comparison with experiment.

The most likely interpretation of fp(1500), we believe,
is not as a glueball [7] but as a state composed largely
of an ss quark-antiquark pair. The su scalar and tensor
are nearly degenerate at about 1430 MeV. Thus the ss
scalar and tensor should lie close to each other somewhere
above 1430 MeV. Since the ss tensor has been identified
at 1525 MeV, an ss scalar at 1500 MeV would be quite
natural.

The crucial question not answered by the mass results,
however, is whether the decay width of the lightest scalar
glueball is small enough for this particle actually to be
identified in experiment. In addition, it is sometimes
argued that since glueballs are fIavor singlets they should
have the same couplings to 2~o, to 2', and to 2g. This
expectation is violated by fJ(1710) decay couplings.

In the present article we report the first lattice QCD cal-
culation of the valence (quenched) approximation to the
partial decay widths of the lightest scalar glueball to pairs
of pseudoscalar quark-antiquark states. The calculation
is done with 10500 gauge configurations on a single lat-
tice, 163 X 24, at P = 5.70 corresponding to inverse lat-
tice spacing a ' = 1.35 GeV. We believe this lattice has
spacing sufficiently small and volume sufficiently large to
give partial widths within 30% of their infinite volume
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FIG. l. Decay couplings.

continuum limits. The predicted decay couplings, com-
bined with the mass prediction of 1740(71) MeV, give a
total two-pseudoscalar decay width of 108(29) MeV for
the scalar glueball. With any reasonable guess concern-
ing the scalar glueball's branching fraction to multibody
decay modes, the resulting total decay width is well be-
low 200 MeV and therefore small enough for the scalar
glueball to be identified in experiment. In fact, the pre-
dicted total two-pseudoscalar decay width, and individual
couplings to 2~0, to 2K', and to 2g are all in good agree-
ment with properties of fJ(1710) and inconsistent with all
other established Aavor singlet scalar resonances. A com-
parison of our results with data for fJ(1710) [8] is shown
in Fig. 1.

Glueballs found in the valence approximation, accord-
ing to one simple interpretation, contain no admixture of
configurations with valence quarks or antiquarks. Thus
we consider the agreement between the mass and decay
couplings found in the valence approximation and the ob-
served mass and decay couplings of fJ(1710) to be strong
evidence that this state is largely a scalar glueball with at
most some relatively smaller amplitude for configurations
including valence quark-antiquark pairs.

The calculations presented here were carried out on the
GF11 parallel computer [9] at IBM Research Center and
took approximately 2 yr to complete at a sustained com-
putation rate of between 6 and 7 GAops. A preliminary
version of this work is discussed in Ref. [10].

In the remainder of this paper we describe our method
for determining scalar glueball decay couplings and then
present our numerical results.

To evaluate glueball decay couplings we work with
a Euclidean lattice gauge theory, on a lattice L && T,
with the plaquette action for the gauge field, and the
Wilson action for quarks. It is convenient initially
to assume exact liavor SU(3) symmetry for the quark
mass matrix. With each gauge configuration fixed to
a lattice Coulomb gauge, we construct a collection of
smeared fields. We describe smearing only for the
particular choice of parameters actually used in the decay
evaluation. Let U, (x) for a space direction i = 1, 2, 3,
be a smeared link field [1] given by the average of the

nine links in direction i from the sites of the (3 site)
X (3 site) square oriented in the two positive space
directions orthogonal to i starting at site x. Let V;~(x) be
the trace of the product around the outside of a (3 link)
X (3 link) square. Define the zero-momentum scalar
glueball operator g(t) to be the sum of the V;~(x) for
all i, j, and x with time component t. Let the quark
and antiquark fields I'(x) and 'Il'(x) be Wilson quark
and antiquark fields smeared [6] by convoluting the local
Wilson fields with a space direction Gaussian, invariant
under lattice rotations and with mean-square radius 6.0.
The smeared pseudoscalar field vr;(x) with IIavor index
i is 'P(x)y A Ij'(x), where A, is a Gell-Mann fiavor
matrix. Let vr, (k, t) be the Fourier transform of ~;(x) on
the time t lattice hyperplane.

Define E] and F2 to be the energy of a single pseu-
doscalar at rest or with momentum magnitude ~k~ =
27r/L, respectively. The field strength renormalization
constant g~ is defined by the requirement that for large

t the vacuum expectation value (7r; (0, t)~;(0, 0)) ap-
proaches (gi ) L exp[ —Eit]. Define gz similarly from

a pseudoscalar field with momentum magnitude ~k~ =
2~/L. In the valence approximation, the glueball is sta-
ble so that its mass Eg and field strength renormalization
constant gg can be defined by the requirement that, for
large t, (g(t)g(0)) approaches (gg)2L3exp( —Egt).

From pseudoscalar fields at position 0 and times t;,
define the two-pseudoscalar, fiavor singlet field II(t~, t2)
to be (16) ' P; ~;(0, t~)~;(0, t2), where the sum over
i runs from 1 to 8. Let the zero-momentum,
two-pseudoscalar IIavor singlet field 11i (t~, t2) be
(16) '~ g;fr; (0, ti) 7r;(0, t2). Define the two-pseudo-
scalar field II2(ti, t2) to be (24) ' g, I 7r;(k, t~)B;X.
(—k, t2), where the sum for k is over the three positive
orientations with

~
k l

= 27r /L
Let ll) and ~2) be, respectively, the lowest and second

lowest energy flavor singlet, rotationally invariant two-
pseudoscalar states. Both states are normalized to 1. Let
E; be the energy of ~i). Define the amplitudes rI,J (t)
to be L (ilII~(t, 0)~A). For large t, rI;~ (t) has the
asymptotic form g,~ exp( E~ t). The di—agonal coeffi-
cients g~~ and g22 are expected to be larger than the
off-diagonal gq~ and g~q, respectively, As a conse-
quence of the interaction between pairs of pseudoscalars,
however, the off-diagonal coefficients will not be zero.

Connected three-point functions from which coupling
constants can be extracted are now given by T;(t~, t )
defined as (g(tg)II;(t, 0)) —(g(tg))(II;(t, 0)). If the
quark mass, and thus the pseudoscalar mass, is chosen
so that F~ is equal to Fg, the lightest intermediate state
which can appear between the glueball and pseudoscalars
in a transfer matrix expression for T~(tg, t ) is ~1). Thus
for large enough tg with t fixed, T~(t~, t ) will be
proportional to the coupling constant of a glueball to
two pseudoscalars at rest. If the quark mass is chosen
so that F2 is equal to Fg, however, the lightest
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intermediate state which can appear between the glueball
and pseudoscalars in a transfer matrix expression for
T2(tg, t ) we still expect to be ~1), not ~2), since rli2 (t)
is expected not to be zero. To obtain from T2(tg, t ) the
coupling of a glueball to two pseudoscalars with momenta
of magnitude 2rrL, the contribution to T2(tg, t ) arising
from the ~1) intermediate state must be removed.

From the three-point functions we therefore define the
amplitudes C, (t~, t2) =C~;exp( —E~ tl) + C2;exp( —E2 t~), (4)

malization convention used in the section on kinematics
of the Review of Particle Properties.

To obtain values of A; from Eq. (2) we need the ampli-
tudes ri; J (t). These we determine from propagators for
two-pseudoscalar states. Define two-pseudoscalar propa-
gators C;(t~, tz) to be(II(t~ + 2t2, t~ + tz)II;(t2, 0)). For
moderately large values of t~, these amplitudes approach

for (i, j) of either (1,2) or (2, 1). In S2(tg, t ) the
contribution of the undesirable ~1) intermediate state has
been canceled. In Si(tg, t ) a contribution from the
intermediate state ~2) has been canceled. Although the
subtraction in Si(tg, t ) is irrelevant for large enough tg,
we expect that as a result of this subtraction Si(tg, t )
will approach its large tg behavior more rapidly than does
Ti(t, , r ).

An additional intermediate state which can also appear
in a transfer matrix expression for either T;(tg, t ) is the
isosinglet scalar bound state of a quark and an antiquark.
For the parameter values used in the present calculation
we have found that this state has a mass in lattice units
above 1.25, while the scalar glueball mass is 0.972(44).
Thus for large enough tg the scalar quark-antiquark state
will make only its appropriate virtual contribution and
does not require an additional correction.

At large tg and t, the three-point functions become

c;~3A; iig il;; (1 —r)L3

$8Eg(E )2

where ci = I/~2, c2 = ~3, r is il~q ri2i /xiii il22, and

A~ and A2 are the glueball coupling constants to a pair
of pseudoscalars at rest or with momenta of magnitude
2~L ', respectively. The factors g;~ are given by the
large t behavior of ri, ~ (t) as discussed earlier. For
T» tg ) t, the factors s;(tg, t ) are

g;(tg, t ) =/exp[ —E'~t —
&g~

—E; ~t~

—E; lr —r I
—~;(t, t )lt —r I], (3)

where, for t ) t, 6;(t, t ) is the binding energy E;
2E, and otherwise 6;(t, t ) is 0.

The coupling constants in Eq. (2) have been identi-
fied by comparing S; (t„, t ) with the three-point functions
arising from a simple phenomenological interaction La-
grangian. This procedure is correct to leading order in
the coupling constants. A similar relation used to find
coupling constants among hadrons containing quarks has
recently yielded several predictions in good agreement
with experiment [11]. The A. ; are normalized so that in
the continuum limit they become, up to a factor of —i,
Lorentz-invariant decay amplitudes with the standard nor-

C;, =q, , (t&)g,, (t2) + J6q, , (t2)il, , (t2). (5)

From these expressions the required g,~ (t) can be
extracted.

The ii,~ (r) in Eq. (2) serve, among other purposes, to
correct for the interaction between the two pseudoscalars
produced by a glueball decay. In the valence approx-
imation this interaction does not include the production
and annihilation of virtual quark-antiquark pairs. Corre-
spondingly, in the numerical evaluation of C;(t~, t2) from
quark propagators, we include only terms in which all ini-
tial quarks and antiquarks propagate through to some final
quark or antiquark. Terms in the two-pseudoscalar propa-
gator in which initial quarks propagate to initial antiquarks,
if inserted into a glueball decay diagram, lead to closed
quark loops and thus to processes missing from glueball
decay in the valence approximation. For very large t j and
T, the C;(t&, tz) are given by a sum of two terms each
of which is a slightly more complicated version of one
of the exponentials in Eq. (4). This complication occurs,
for example, because in the valence approximation the ex-
change of a p between the pseudoscalars produced in a
glueball decay is not iterated in the same way as in full
QCD. Each term in Eq. (4) holds without modification
if ~E; —2E; ~ t~/2 && 1. The intervals of t~ we use
to determine the g;J fall well within this limitation. In
any case, as we will discuss below, the measured values
of g;~ turn out to be close to their values for noninteract-
ing pseudoscalars. As a consequence, the corrections due
to interactions between the decay pseudoscalars which the

contribute to the predicted values of A; are compara-
tively small.

We now turn to our numerical results. At P = 5.7 on a
16 X 24 lattice, with an ensemble of 10 500 independent
configurations, we determined glueball and single pseu-
doscalar energies and renormalization constants following
Refs. [1] and [6], respectively. For Eg, as mentioned
above, we found 0.972 ~ 0.044. On a lattice of size
16 X 40 we then evaluated the two-pseudoscalar prop-
agator C;(t~, t2) at ~ = 0.1650 using 100 independent
configurations, and at ~ = 0.1675 using 875 independent
configurations. Fitting the t~ dependence of C;(t~, t2) by
Eqs. (4) and (5), we determined E, and g;~ (t2) for a
range of different t2. At ~ = 0.1650 we obtained re-
sults for 0 ~ t2 ~ 4, and at 0.1675 we found results for
0 ~ t2 ~ 5. The values of F.; were statistically consis-
tent with being independent of t2 in all cases. The i7;~ (tq)
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were consistent with the asymptotic form g;J exp( —E~ t2)
in all cases for t2 ~ 2. At ~ = 0.1650 for Fi we ob-
tained 0.908(5), giving glueball decay to ~1) nearly on mass
shell. At ~ = 0.1675 for E2 we found 0.893 0'o04, giv-
ing glueball decay to ~2) nearly on mass shell. For the
normalized ratios fl;~ defined as rl;~ /(rlj ), at Ir =
0.1650 we obtained for ij of 11, 12, 21, and 22, the
values 0.988(30), 0.091(8), —0.087(8), and 1.065(13), re-
spectively. At I~ = 0.1675 we found 1.050(21), 0.107(6),
—0.112(8), 1.053(53). For noninteracting pseudoscalars

is 1 for i = j and 0 otherwise. Our data are close to
these values. The final value of Ai is changed by less than
1 standard deviation and the final A2 is changed by less
than 2 standard deviations if we ignore the determination
of g;~ and simply use the noninteracting values.

From our 10500 configuration ensemble on a 16 X 24
lattice, we evaluated Si and S2 for glueball decay on
mass shell at ~ of 0.1650 and 0.1675, respectively.
We obtained statistically significant results for 0 ~ tg-
t ~ 2 with 0 ~ t ~ 8. At each point within this range
we then determined effective A; using Eq. (2). We found
A~ and A2 statistically consistent with being constant
for t ~ 3 and t ~ 2, respectively, and all values of
tg

—t Figure 2.(a), for example, shows effective A2 in
units of the p mass as a function of t for t~

—t = 2,
in comparison to a fit with 2 ~ t ~ 6, tg

—t = 2.
Figure 2(b) shows fitted values of A2 on the interval
2 ~ t ~ 6 for fixed tg

—t of 0, 1, or 2. To extract
final values of A;, we tried fits to all rectangular intervals
of data including at least four values of t„and at least
two values of tg

—t . For each A; we chose the fit
giving the lowest value of g per degree of freedom.
The window determined in this way for Ai is 3 ~ t ~ 7
with 1 ~ tg

—t ~ 2, and for A2 is 2 ~ t ~ 6 with
0 ~ tg

—t ~ 1. The horizontal line in Fig. 2(b) shows
the final value of A2. Over the full collection of windows

we examined, the fitted results varied from our final
results by at most 1 standard deviation. We believe our
best fits provide reasonable estimates of the asymptotic
coefficients in Eq. (2).

So far our discussion has been restricted to QCD with
u, d, and s quark masses degenerate. An expansion to
first order in the quark mass matrix taken around some
relatively heavy SU(3) symmetric point gives glueball
decay couplings for ~'s, K's, and g's, which are a
common linear function of each meson's average quark
mass. Since meson masses squared are also nearly a
linear function of average quark mass, the decay couplings
are a linear function of meson masses squared. Thus
from a linear fit to our predictions for decay couplings
as a function of pseudoscalar mass squared at unphysical
degenerate values of quark masses we can extrapolate
decay couplings for physical nondegenerate values of
quark masses. From this linear fit a prediction can also
be made for the decay coupling of the scalar glueball
to g + g', if we ignore the contribution to the decay
from the process in which the g quark and antiquark
are connected to each other by one propagator and the
g' quark and antiquark are connected to each other by a
second propagator.

Figure 1 shows predicted coupling constants as a func-
tion of predicted meson mass squared along with linear
extrapolations of the predicted values to the physical ~,
K, and g masses, in comparison to observed decay cou-
plings [8] for decays of fJ(1710) to pairs of 7r's, K's and
g's. Masses and decay constants are shown in units of
the p mass. Our predicted width for the scalar glueball
decay to g + rl' is 6(3) MeV. For the ratio A„„,/A„„we
get 0.52(13). We predict a total width for glueball decay
to pseudoscalar pairs of 108(29) MeV, in comparison to
99(15) MeV for fJ(1710).
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FIG. 2. (a) A2 for tg
—r = 2. (b) A2 fitted on 2 ~ t ~ 6

as a function of t„—t„ for the fitting interval.
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