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Evidence for Complex Subleading Exponents from the High-Temperature
Expansion of Dyson's Hierarchical Ising Model
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Using a renormalization group method, we calculate 800 high-temperature coefficients of the
magnetic susceptibility of the hierarchical Ising model. The conventional quantities obtained from
differences of ratios of coefficients show unexpected smooth oscillations with a period growing
logarithmically and can be fitted assuming corrections to the scaling laws with complex exponents.
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The renormalization group method [1] has enhanced
considerably our understanding of elementary processes
and critical phenomena. In particular, it has allowed the
computation of the critical exponents of lattice models
in various dimensions. On the other hand, the critical
exponents can be estimated from the analysis of high-
temperature series [2]. Showing that the two methods give
precisely the same answers is a challenging problem [3].
More generally, much could be gained if we could combine
these two approaches, in particular, in the context of lattice
gauge theories.

As far as the numerical values of the critical exponents
are concerned, there are two difficulties. The first one
[4] is that one needs much longer high-temperature series
than the ones available [5] (which do not go beyond or-
der 25 in most of the cases) in order to make precise es-
timates. The second is that the practical implementation
of the renormalization group usually requires projections
into a manageable subset of parameters characterizing the
interactions. It is nevertheless possible to design lattice
models [6], called hierarchical models, which can be seen
as approximate versions of nearest neighbor models, for
which such projections are unnecessary. For the hierar-
chical models, the renormalization group transformation
reduces to a recursion formula, which is a simple integral
equation involving only the local measure. This simplic-
ity allows one to control rigorously [7] the renormalization
group transformation and to obtain accurate estimates of
the critical exponents [8]. As explained in the next para-

graph, the recursion formula also allows one to calculate
the high-temperature expansion to very high order. Con-
sequently, the hierarchical model is well suited to study the
questions addressed above.

In this Letter, we report the results of a large scale
calculation that performs the high-temperature expansion
of the magnetic susceptibility of Dyson's hierarchical
Ising model up to order 800. The models considered here
have 2 sites. Labeling the sites with n indices x„, . . . , x~,
each index being 0 or 1, we can write the Hamiltonian as

f )t ( )20=-—g —„'
2 t=i(4) ..

The free parameter c that controls the strength of the in-
teractions is set equal to 2' / in order to approximate a
nearest neighbor model in D dimensions. In the follow-
ing, the spins o.~,~

are integrated with a local Ising
measure; i.e., they only take the values ~1

~ The integra-
tions can be performed iteratively using a recursion for-
mula studied in Ref. [7]. Our calculation uses the Fourier
transform of this recursion formula with a rescaling of
the spin variable appropriate to the study of the high-
temperature fixed point [9). It amounts to the repeated
use of the recursion formula

q~+~

RI+i(k) = «+i exp ——P —
I

(2)
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which is expanded to the desired order in P. The ini-
tial condition for the Ising measure chosen here is Ro =
cos(k). The constant C~+ i is adjusted in such a way
that R~+i(0) = l. After repeating n times this procedure,
we can extract the finite volume magnetic susceptibility
g„(P) = 1 + bi „P + bq„P + from the Taylor ex-
pansion of R„(k) which reads 1 —(1/2)k g„+ . This
method has been presented in Ref. [9] and checked us-
ing results obtained with conventional graphical methods
[10]. In most of the calculations presented below, we
have used n = 100, which corresponds to a number of
sites larger than 10 . The calculations were implemented
with a C program, which ran for 6 weeks on a DEC-alpha
3000/4000 in order to obtain 800 coefficients for D = 3.

For the discussion that follows, it is crucial to estimate
precisely the errors made in the calculation of the coef-
ficients. There are two sources of errors: the numerical
roundoffs and the finite number of sites [11]. We claim
that with 2'0 sites and 3 ~ D ~ 4, the finite volume
effects are several orders of magnitude smaller than the
roundoff errors. From Eq. (2), one sees that the leading
volume dependence will decay as (c/2)". This observa-
tion can be substantiated by using exact results at finite
volume [10] for low order coefficients, or by displaying
the values of higher order coefficients at successive itera-
tions as in Fig. 1 of Ref. [9]. In both cases, we observed
that the (c/2)" law worked remarkably well. For the main
calculation presented below, we have used c = 2'~3 (i.e.,
D = 3) and n = 100, which gives volume effects of the
order of 10 . On the other hand, the roundoff errors
are expected to grow like the square root of the number
of arithmetical operations. In Ref. [9], we have estimated
that this number was approximately nm for a calcula-
tion up to order I in the high-temperature expansion
with 2" sites. Putting this together, we estimated that for
n = 100, the error on the mth coefficient will be of orderI X 10 ' . We have verified this approximate law by
calculating the coefficients using a rescaled temperature
and undoing this rescaling after the calculation. We have
chosen the rescaling factor to be 0.8482 and the rescaled
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FIG. 1. The extrapolated slope 5 for m ~ 200 and D = 3,
3.5, and 4.

critical temperature is then approximately 1. This pre-
vents the appearance of small numbers in the calculation.
If all the calculations could be performed exactly, we
would obtain the same results as with the original method.
However, for calculations with finite precision, the two
calculations have independent roundoff errors. Compar-
ing the results obtained with the two methods for the
coefficients up to order 200 shows that the numerical fluc-
tuations of bm grow approximately as I X 10 ' . More
conservatively, we can say that the numerical errors are
bounded by I X 10 '5. We conclude that for the calcu-
lations reported below, the errors on the coefficients are
dominated by the numerical roundoffs, and we estimate
that they do not exceed 10

In order to estimate y, we used standard methods
described in Refs. [2,4]. For the sake of definiteness, we
recall a few definitions. First, we define rm = b~/bm
the ratio of two successive coefficients. We then define
the normalized slope S and the extrapolated slope S as

S = —m(m —1) (r —r ~)/[mr —(m —1)r ~ j,
~m = m~m —(m —I)~m-i (3)

The extrapolated slope, which is free of order n
corrections [4], is displayed in Fig. 1 for m ~ 200. For
comparison, we have also displayed the results for D =
3.5 and 4. A surprising feature is the clear appearance
of large oscillations for D = 3. When D is increased,
the amplitude of these oscillations diminishes. They are
still present at D = 4 and can be seen better by plotting
S +~ —S . One important point of this Letter is to
establish that these oscillations are not due to the errors
discussed above. As a consequence of the multiplications
by I appearing in the definition of the extrapolated
slope, the errors are amplified by a factor that can be
as large as 105 for I near 100 and 10 for rn near
500. However, even when multiplied by such large
factors our most conservative estimate of the numerical
errors gives errors on the extrapolated slope that are
several orders of magnitude smaller than the amplitude
of the oscillations. We have made independent checks
of this statement for D = 3 by calculating directly the
extrapolated slope for n = 100 and 200 and by using
an intermediate temperature rescaling as explained above.
The smoothness of the oscillations appears clearly in

Fig. 2, where S is displayed for 50 ~ m ~ 800. This
smoothness rules out large numerical fluctuations. In
conclusion, we have established that the oscillations in
the extrapolated slope are a genuine feature of the model
considered. Figure 2 also shows that the extrema are not
equally spaced. Instead, the location of one extremum
can be approximately found by multiplying the location
of the previous extremum by 1.19. In other words,
the extrema of Fig. 2 would look equally spaced if the
abscissa variable had been In(m) instead of m. This,
of course, suggests the use of a complex exponent since
Re(m' ) = cos[o. ln(m)].
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FIG. 2. The dots are the extrapolated slope S for 50 ~ m ~
800 and D = 3. The continuous curve is the fit described in
the text.

In the conventional description [12] of the renormaliza-
tion group flow near a fixed point with only one eigen-
value A& ) 1, one expects that the magnetic susceptibility
can be expressed as

with 6 =
~ In(A2) ~/In(A~) and Az being the largest of the

remaining eigenvalues. It is usually assumed that these
eigenvalues are real. This implies [4] that

S =y —1+Bm + O(m ).

This parametric expression allows good quality fits for m
large enough. For instance, a least squares fit for the m ~
300 data yields p, = 1.412, mp = 512, p = 0.67, y =
1.310, and K = 2.53. The fit is displayed in Fig. 2. More
accurate results could presumably be obtained if we had a
consistent description of the oscillations involving definite
relations among the parameters of Eq. (6). The value of
y is in good agreement with the result [7,8] obtained
with the e expansion, namely, 1.300. The value of p is
not far from [ In(A2)~/In(A~), which is approximately 0.46
according to Refs. [7,8].

We have considered two possible explanations of the
oscillatory behavior. Both explanations are compatible
with the parametrization of Eq. (6); however, they are

If 5 is real, there is no room for the oscillations in
this description. Nevertheless, the fact that the period of
oscillation increases logarithmically with m suggests that
one could modify slightly Eq. (5) by allowing B and 5
to be complex and selecting the real part of the modified
expression. This introduces two new parameters, and we
have chosen to use the following modified parametrization
of the extrapolated slope:

ln(m/mp)S = y —1+ Km icos 2~ + O(m ).
In(p, )

completely different from a conceptual point of view. In
the first explanation, A2 is replaced by a couple of complex
conjugated eigenvalues. In the second explanation, the
eigenvalues stay real but the constants Ap and A & in Eq. (4)
are replaced by periodic functions of In(P, —P) with
period In(A~). We now proceed to discuss each possibility
separately.

The replacement of A2 by a couple of complex conju-
gated eigenvalues is a minimal modification that requires
no more parameters than the ones introduced in Eq. (6).
However, with the exception of a class of triangular Ising
models with space dependent couplings [13], complex
eigenvalues do not appear in any calculation we know.
Let us discuss a few examples where the eigenvalues are
real. In the context of field-theoretical calculations, the
eigenvalues are extracted from the matrix of derivatives
of the beta functions evaluated at a fixed point, and in
all the calculations we know real eigenvalues have been
obtained. General arguments for this have been found in
the case of conformal theories in two dimensions: It has
been shown for low order calculations (in the coupling
constants) that the matrix mentioned above is symmet-
ric [14],which implies real eigenvalues. Exactly solvable
Gaussian models provide further examples of a real spec-
trum where the largest eigenvalues are widely separated.
These properties of the Gaussian spectrum remain valid
if one uses the e expansion [1,7,8] with e small enough.
This result is of direct relevance to our problem and needs
to be discussed in more detail. For the hierarchical Ising
model, one could imagine that when D is continuously
evolved from 4 (where the fixed point is expected to be
Gaussian) to 3, the validity of the e expansion breaks
down, and two real eigenvalues merge into each other
and subsequently evolve as complex conjugates of each
other. However, our numerical data do not support the
idea of such a sudden change. As shown in Fig. 1, the
amplitude of the oscillations increases with 4 —D, but
the oscillations are already present at D = 4. It appears
from these considerations that the possibility of complex
eigenvalues would require unexpected circumstances such
as, for instance, the existence of a new type of fixed point.
On the other hand, the fact that our best estimate of y
agrees within 1% with the conventional calculations [7,8]
indicates that such a radically different approach might be
unnecessary.

The second explanation that we have considered is that
the eigenvalues stay real but the constants Ap and Ai in
Eq. (4) are replaced by functions of P, —P invariant
under the rescaling of P, —P by a factor (A&)', where
l is any positive or negative integer. This invariance
implies that these functions are periodic functions in
In(P, —P) with period In(A~) and can be expanded in
integer powers of (P, —P)' ~'"(~'1. This possibility
appears naturally for models with one relevant (and real)
eigenvalue A i, which satisfy a renormalization group
equation discussed in Sec. II of Ref. [15]. It is not
clear that the susceptibility of the hierarchical model
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satisfies an equation of this type. However, discrete scale
invariance is quite reminiscent of the peculiar symmetries
of the hierarchical model discussed in Refs. [10,16]. In
the special case where Ao is restricted to the constant
mode and At to a real combination of (P, —P) —'

we recover a parametrization equivalent to Eq. (6). Our
numerical data are in good agreement with the specific
prediction concerning the periodicity: The best fit value
p, = 1.412 in Eq. (6) is close to the best estimate of the
largest (and only relevant) eigenvalue [7,8] At = 1.427.
In conclusion, the second possibility appears plausible,
but it remains to be shown that corrections involving

(p, —p)'z l'"(~') follow from Eq. (2). This question is
presently under study [17].

A complete resolution of the problem is important be-
cause one needs to know if the oscillations reported here
are due to the peculiarities of the hierarchical model or
if these are also present for models with translational in-
variance. If the oscillations are peculiar to the hierarchi-
cal approximation, it is important to determine to which
extent they affect results obtained using this approxima-
tion. To take an example of great importance in particle
physics, an upper bound on the mass of a self-interacting
scalar particle, also called triviality bound, was derived
[18] using an approximation closely related to the hier-
archical approximation considered here. Since the oscil-
lations appear in the susceptibility, which is a physical
quantity, they should also be apparent in the How of bare
quantities used to establish triviality bounds. The analy-
sis of Ref. [18] is being reconsidered [17] in this con-
text. On the other hand, if the mechanism responsible
for the oscillations applies to models having a conven-
tional translational invariance, it could provide one with a
more complete understanding of the "noise" [4], which
makes the analysis of high-temperature series difficult.
We have analyzed the longest series available for models
with translational invariance, namely, the first 54 terms of
the high-temperature expansion for the nearest neighbor
Ising model on a square lattice [19]. After using a Euler
transformation to get rid of the oscillations (of constant
period 2) coming from the antiferromagnetic transition at
—P„we found damped oscillations in the differences of
successive extrapolated slopes. These oscillations decay
much faster than in the hierarchical case. The series is
unfortunately too short and not regular enough to draw
definite conclusions concerning a logarithmic increase of
the period of oscillation.

In conclusion, we have shown that a calculational
method of the high-temperature expansion based on the
renormalization group method can be a very powerful tool
when the hierarchical approximation is used. Our analysis
of the magnetic susceptibility has shown that unexpected
oscillations appear in the extrapolated slope. Our most
plausible explanation indicates that these oscillations may
be related to the peculiar symmetries of Dyson's hierar-
chical model. A detailed understanding of these oscilla-

tions is required in order to provide a precise comparison
between the results obtained from the high-temperature
expansion and the e expansion for the hierarchical model,
as well as for using and improving the hierarchical ap-
proximation for models with a conventional translational
invariance.

One of us (Y.M.) stayed at the Aspen Center for
Physics during the last stage of this work and benefited
from stimulating conversations with the participants, es-
pecially with N. Warner.
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