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Depletion Stabilization by Semidilute Rods
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The entropic depletion force in colloids arises when large particles are placed in a solution of smaller
ones and sterically constrained to avoid them. We calculate the interaction between two hard spheres
(of radius R) in a semidilute solution of hard rods of length L and diameter D (D « L « R) to second
order in rod concentration. In addition to the well-known attractive force for separations less than L,
we find a repulsive force between the spheres at larger separations. For semidilute rods, the resulting
barrier can be large compared to k~T, permitting kinetic stabilization.

PACS numbers: 82.70.Dd, 64.60.—i

Recently, suspensions consisting of colloid-polymer and
colloid-colloid mixtures have attracted considerable atten-
tion as a result of their rich phase behavior [1]. The phase
transitions in these systems arise from the nonadditivity of
the excluded volumes leading to the so-called depletion in-
teraction. This depletion interaction was first recognized
and formulated for a number of cases by Asakura and Oo-
sawa [2,3]. In Ref. [3] they showed that both the range
and the absolute value of the depletion interaction can in-
crease when rodlike macromolecules are used instead of
spherical ones as the depletant. Bolhuis and Frenkel [4]
presented a numerical study of the phase diagram of a mix-
ture of spherical and infinitely thin rodlike colloids using
simulations and first order perturbation theory. Their work
suggests in addition to the fiuid-solid transition the possi-
bility of a Quid-Quid phase separation. Experimentally,
however, no depletion phase separation induced by rod-
like macromolecules or particles has been observed [5,6].
This raises an important issue of principle, whether the de-
pletion interaction might, in this case, give rise to kinetic
stabilization rather than depletion Aocculation or phase
separation. A hint as to why this might happen is provided
by recent calculations of the depletion interaction between
large spheres (radius R) due to the presence of small ones
with volume fraction P, where at second order in @ a re-
pulsive barrier appears in the depletion potential [7,8].

In this Letter we consider the depletion interaction be-
tween two large spheres (of radius R) caused by mutually
avoiding thin hard rods of length L, diameter D (D &(
L «R), and bulk number density nb. Our second or-
der calculation, given below, is formally valid only for
small values of the reduced density c~ = n~DL . How-
ever, we believe that the physical mechanism leading to
the repulsive barrier that we find should persist through-
out the semidilute regime.

Our calculation method parallels that of Ref. [8]. We
first find the depletion force, f„(h) per unit area between
two infinite parallel plates, at separation h; the force f,
between two large spheres of radius R» L then follows

by the Derjaguin approximation [9]:
h

f, (h) = 7rR— fp(h') dh'.

W, (h) = f,(h') dh'

R= kBTcb [Ki(h/L) + cbK2(h/L)], (4)
D

where Ki 2(h/L) are a further pair of dimensionless
functions, considered in detail below.

To calculate f~ to second order in rod concentration we
invoke the "pressure sum rule" [10], which expresses
p, the (osmotic) pressure exerted on a hard wall by a
solution of thin rods, as p = ktiTn, (~) where n, (~) is
the density of rod ends in contact with the wall. For hard
rod particles, this relation is exact to all orders in bulk
concentration; it is the analog of Henderson's formula
for the pressure in terms of the contact density for hard
spheres [11],and may be proved rigorously (for rods in
vacuo) by elementary kinetic theory.

For two hard parallel plates immersed at separation h
in a solution of depletant, the force per unit area on one
of the plates is simply the differential pressure on its two
sides:

fp(h) = kiiT[n, (h) — (n~)], (2)
where n, (h) is the density of rod ends in contact with a
plate, separated by h from another. To second order in
(reduced) density, this can be written in the form

~cb ll
n, (h) = nb 1 + [Ei(h/L) —cbE2(h/L)], (3)2 )

where Ei q(h/L) are a pair of dimensionless functions
whose calculation we defer to the end of this Letter. The
depletion force f„(h) for general separation h follows
immediately from Eqs. (2) and (3); from this, the force
f, (h) between spheres of radius R can be found by the
Derjaguin approximation. To second order in c~, the
interaction energy between two such spheres is given by
one further integration and takes the form
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The scalings of the two contributions to the depletion
interaction in Eq. (4) are of great interest. The first order
term Ki influences the depth of the attractive (primary)
minimum, which is of order k~TnbRL, and this is the
same scaling as for depletion by small spheres whose di-
ameter o is equal to the length of the rods L. For a given
L = cr, however, much larger attractions are possible with
rods since the maximum nb is of order (DL ) ' (corre-
sponding to cb = 1), which far exceeds that attainable for
spheres of order cr . The second order contribution in

(4), which provides the repulsive barrier, arises directly
from the excluded volume interaction among rods, and ac-
cordingly is smaller than the first by one power of cb. The
barrier height attains values of order kiim /D for cb val-
ues of order unity. It may be confirmed by simple argu-
ments that the third order correction to (4) is smaller than
the second by a factor of order cb, so that cb = 1 lies at
the edge of the domain of validity of our theory for the
depletion force. (The same remark would not apply to the
bulk equation of state where the third order terms remain
negligible near cb = 1 for large L/D [12,13].) Although
higher order terms will modify our quantitative predictions,
we see no physical reason for the qualitative scenario of a
large repulsive barrier to change strongly before the On-
sager transition is reached at cb = 4.2 [12,13].

These findings may be compared with depletion by
spheres [7,8] in which the maximum barrier height (which
again arises at the limit of validity of the second order
treatment) scales as kIiTR/o. Hence, ro. ughly speaking,
to obtain a similar barrier height to that obtainable with
semidilute rods at cb = 1, spheres of size comparable to
the rod diameter would be required at a volume fraction
of order unity. The resulting barrier would then arise at
separations h = D rather than h = L, and so be much
less robust against attractive contributions from van der
Waals forces, surface asperities, and other perturbing
effects. We can therefore conclude that the prospects of
observing depletion stabilization are very much higher in
the rod case.

Our results for the functions E~ 2 are plotted in Fig. 1;
together they allow the second order depletion potential
curve to be constructed from (4) for any parameters
desired. Representative curves are shown in Fig. 2 for
R/L = 10, L/D = 20, and various cb. The case cb = 2
corresponds to a rod volume fraction of only around 8%,
but the height of the repulsive barrier is already 25k&T.
Of course, a quantitative use of the theory is unjustified
for this value of cb, but the result nonetheless suggests
that kinetic stabilization of colloids could feasibly be
achieved under practical conditions by suspending them in
a semidilute solution of high-aspect-ratio rodlike particles.
In Fig. 3 we plot, for a given R/L = 10, the volume
fraction of rods required to attain a given barrier height of
20k~T as a function of the aspect ratio of the rods. This
highlights the efficacy of long thin rods for stabilization
purposes. Also shown is the volume fraction at which the

0.06-

0.04

0.02

1.5

-0.02

—0.04

—0.06-

-0.08-

FIG. 1. The dimensionless functions E~ 2, allowing the deter-
mination of the depletion potential to second order for arbitrary
parameters.

Pb=1—nres v„,(Az) dA2 = 1 —nb DL
2

To find the density nb of rod centers at the arbitrary
point r in the bulk, we argue that if a rod is allowed
there (probability Pb) the density is n„„; otherwise it is
zero. Hence nb = n«, PI, = n«, [1 —(7r/2)cb] where cb =
nb DL is the reduced density. Inverting this relation gives

nb[1 + (n/2)cb + 6(nb)]

barrier height is equal to the thermal energy. This marks
the onset of significant departures from the conventional
scenario of attractive depletion forces; note, however, that
in principle there is no concentration below which the
barrier completely disappears, since the function E2 is of
longer range than Ki (see Fig. 1).

We now summarize the arguments that allow us to
calculate the functions Ei z(h/L) and Ei z(h/L) defined
above. (For related work on rods near a single plate,
see Ref. [14].) Our calculation of n, (h) to second or-
der in nb rests on the same idea as lies behind the po-
tential distribution theorem due to Widom [15,16]. Sup-
pose we put our system of rod particles and parallel plates
in contact with a hypothetical reservoir in which rods are
exempt from mutual excluded-volume interactions. We
first calculate the relation between the particle density in
the reservior n„, and the bulk density nb. Imagine an
infinitesimal volume centered at position r in the bulk
solution in which we consider placing (the midpoint of)
a rod of orientation Ai = (Oi, Pi). This would exclude
from a volume v„,(02) = 2DL ~sin02~ the midpoint of
another rod with relative orientation 02 = (02, P2) de-
fined with respect to coordinate axes in the first rod. (We
define our angular coordinates so that 0 ~ 0 ~ vr/2; the
number density of rods in the reservior with orientation
in the range (A, 0 + dA) is then n„, dA/2'. ) The
presence of our proposed rod at r is permitted only if the
volume v,„,(Az) is empty for all orientations Az, the prob-
ability of this is given, to first order, as
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FIG. 2. A plot of a typical second-order depletion potential; R/L = 10, L/D = 20, cl, = 1.0, 1.5, 2.0, 2.5 (bottom to top). For
cb = 2 there is a repulsive barrier of 25k&T.

The next step is to calculate n, (h), the end density
contacting a confining plate separated by h from another,
in terms of n„, Consider a rod touching the plate with
orientation At and a second rod touching this rod with
relative orientation B2. (See Fig. 4). The height from
the wall of the two ends of the first rod are respectively
0 and zo, those of the second rod, z~ and g2, S~ and S2
locate the position of the contact point of the rods as
shown. The z variables can be expressed in terms of
the others using elementary geometry [17]. The volume
excluded by the first rod to the (midpoint of the) second
rod at fixed (At, Az) is then found by integrating over the
contact point:

with = H(h —zt)H(h —z2)H(zt)H(z2) where the
H's, the Heaviside unit step functions, are needed to
eliminate all configurations forbidden by the interac-
tion with the conhning walls. We may now write
n, (h) =f n, (h, 0) dA, where n„ the density of rods with
orientation Qt at contact with the wall, obeys

n, (h, At) = P(h, A&)H(h —zo) (7)2'
in which the step function accounts for the constraint
on At arising from the presence of a second plate, and
P(h, At) is the prior probability that the volume excluded
by such a rod, in contact with the wall, contains no other
rods. To first order in n„„(or in nb) we have

v„,(h, 0 t, A2) = 2D ~sing2~ dent d52, (6) P(h, At) = I—&res dA2v„, (h, At, A2) (8)
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FIG. 3. Volume fraction of rods required to attain a barrier of 20kaT (upper curve) and k&T (lower curve) as a function of the
aspect ratio R/D Here R/L = 10 is h.eld fixed.
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FIG. 4. Geometry of the two-rod excluded volume calculation.

d cosO~

Combining this result with Eqs. (6) and (7), we obtain, as
promised, Eq. (3), with Et(h/L) = min[h/L, I] and

0, 1

Z, (h/L) =- d cos02
7T 0 0
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d5)
~
sin O2 ), (9)

where St 2
= St 2/L. This completes the specification of

the two dimensionless functions Et 2(h/L), from which
IC& 2(h/L) follow by straightforward analytic (Et) or
numerical (K2) integrations.

As emphasized previously, the calculations given above
furnish the depletion interaction to second order in density
and are quantitatively accurate only for small cb. In
fact, following the work of Ref. [14] for a single wall,
one can formulate a self-consistent integral equation for
the rod density between plates that is, for large aspect
ratios L/D, formally valid to all orders in cb [18]. Its
solution, which poses formidably numerical problems,
should allow a quantitative confirmation of the scenario
we have outlined; we leave this to future work [18].

In summary, we have shown that a relatively small
concentration of long thin rods should serve as an
effective stabilizer of colloidal suspensions of larger
particles by providing a large barrier to Aocculation
into the primary minimum of the depletion potential.
The barrier arises purely by steric (depletion) effects.
This kinetic stabilization, though quite unanticipated in
previous theories of depletion by rods [3,4], is essentially
thermodynamic in origin (and quite separate from any
effects arising from the high viscosity of the intervening
rod solution). It is tempting to attribute the anomalous
phase stability of sphere-rod mixtures to the stabilization
barrier that we predict. However, the condition of the
Derjaguin approximation (R » L) is not met in the
sphere-rod systems studied so far [5,6], and our results
therefore not directly applicable. Further experimental
investigations of suitable systems are highly desirable.
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