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The electrophoretic mobility of an asymmetric reptating molecule—ball and chain—may depend

on chain length quite unlike symmetric molecules.

Analytic and numerical evidence indicates

that resolution in the model introduced in this paper remains good for long chains instead of

deteriorating rapidly as in conventional electrophoresis.

Given the biotechnological importance of

gel electrophoresis for sequencing and separating DNA, this model’s complementary dynamics may be

useful experimentally.

PACS numbers: 82.45.4+z, 05.60.+w, 36.20.Cw, 66.10.Ed

Gel electrophoresis has become a very important tool
in molecular biology. In conventional electrophoresis an
electric field pulls charged polymers, like DNA, through
a disordered medium, such as agarose or polyacrylamide
gel. Longer chains become more entwined with the gel
and thus drift more slowly. Simple theoretical arguments
show that for small fields, the electrophoretic velocity is
inversely related to the length of the chain [1,2]. Ap-
pealing intuitive analogs are smaller children sneaking
more quickly through a jungle gym or long hairs getting
stuck in a brush. Spatial separation of chains of different
lengths is then just a matter of time. However, the varia-
tion of the mean velocity with length N vanishes for long
chains; therefore fluctuations around the mean velocity ul-
timately limit resolution. Various improvements to the
basic technique have been invented to extend the resolv-
able length scale, such as field-inversion gel electrophore-
sis [3] and orthogonal field-alternating gel electrophoresis
[4]; however, all of these techniques are limited by the
fact that, since the velocity goes as 1/N, resolution be-
comes poor for long chains. Here we propose a new rep-
tative approach designed for resolving longer chains.

We will show that attaching a large group to one end
of the chain profoundly changes the form of the dynam-
ics through the medium, in particular, eliminating the in-
herent limitations imposed by a 1/N velocity dependence.
For our theoretical arguments, the Duke-Viovy model [5]
(DVM) of reptation [6] dynamics modified by one new
boundary condition is used. The dynamics of the asym-
metric DVM is pictorially described in Fig. 1: The chain
is modeled as a string of charged beads (reptons) and the
gel as a lattice of cells in which these beads reside. (Lat-
tices used for electrophoresis have, in fact, been fabricated
using microlithography [7].) Continuity of the chain re-
quires that neighboring beads along the chain are either in
the same cell (slack) or in a neighboring cell (taut). There
are d neighboring cells in the direction of the field and
d counter to the field. In experiments the dimensional-
ity is three except for artificial gels [7] where d = 2; for
the purposes of theory, d is a parameter. We will see that
the dimensionality d plays an important role only for the
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dynamics of the chain’s end segments, while the gel pro-
vides a tubelike topological constraint [6,8] which, with the
chain’s continuity constraint, prohibits motion other than
the diffusive motion of slack segments, i.e., those beads
which share a cell with at least one other bead. The slack
segments move in the tube in much the same way that a
carpet ripple may be pushed along the floor.

A minimal description of the system is in terms of
variables y; € {—1,0, 1}, which represent the projection
along the field of the segment j joining two neighboring
beads. One is quickly convinced that in these variables
the dynamics allow only the diffusion of “slack segments”
(y; = 0, also known as “extrons” in the literature) within
the tube. This is the mathematical manifestation of
de Gennes’ original picture of chains reptating in a tube.
The polymer’s ends may extend in 2d directions thereby
eliminating a slack segment and lengthening the tube, or
they may contract deeper into the tube in one direction
introducing a new slack segment.

FIG. 1. The asymmetric Duke-Viovy model represents a
chain as charged beads (called “reptons,” denoted by dark
circles) which occupy a lattice of cells which represent a gel.
With a bias [Eq. (1)] arising from the field, a slack piece of
the chain—a bead which shares a cell—may be displaced
along the chain. The bulky end group (or “ball” represented
by a large circle) is drawn forward elastically by the chain,
but to advance it must overcome an energetic barrier [Eq. (6)].
The configuration can be represented in terms of the segments
between reptons; labeled from the tail, this configuration is
{y;} ={1,1,1,-1,1,0,1,1,0}.
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When a field is applied to uniformly charged molecules,
these diffusive dynamics are biased for charge transport.
In the DVM, the rate of moving a slack segment to a
position j segments away (with no intervening extrons)
is [5]

SSj W, 1
JI = expl—es;1] W
where € = aqFE /kpT is the dimensionless measure of the
applied field E on the repton charge g, where Wy is the
rate for a nearest-neighbor jump in zero field, and where
i+j
Si= 2 @)
k=i+1
is the distance the slack segment at i moves in the field in
units of the lattice spacing a.

How can a bulky end group change the dynamics? If
there is additional friction at the bulky group, with only
the tension of the chain to pull it through the gel, then
one might naively imagine that the rest of the chain has
an opportunity to relax to the thermodynamic equilibrium
distribution of a chain with one fixed end [9]. Let us
use the equilibrium distribution to get some feeling for
the asymmetric model, and later we will show where and
how this simplification breaks down. With one end held
fixed, the equilibrium alignment of the jth segment from
the fixed end can be calculated [10]:
eq 2d Sinh[S(N - ])]
o) = mt = o L

cosh[e(N — j)] + 1
eq 2d cosh[e(N — j)]
bib =07 = S comewn — i+ 17 @
The strong alignment of the segments and the elimination
of slack segments indicate that the field produces a large
force, transmitted elastically, on the fixed segment.

Tension can, of course, not be transmitted through a
slack segment. Since the rate [Eq. (1)] becomes indepen-
dent of length for €S >> 1, the distance to the first slack
segment ‘M is an important quantity. Using the equilib-
rium distribution [Eq. (4)], M can be estimated by mak-
ing the sum an integral:

(M)
1= [ a0 =)

w(j) =

3

arctan[y/(2d — 1)/(2d + l)tanh(x)]ills(N%M»

2e/(2d + 1)(2d — 1)
which is, in the limits of small and large €N, respectively,

2d + 1) + O({(eN)?) ifeN < 1,
(M) ~ {8_1 In(1 + eV /2) if eN > 1. )
Note that for strong fields there are no slack segments in
the body of the chain, only in a region of order 1/& of
the head.
It is possible to investigate the dynamics of asymmetric
chains using analytical tools and to simulate them using
standard Monte Carlo methods. Let us begin by consider-

>

ing the properties analytically. The first observation about
this system is that long chains are more mobile than short
chains. This is just the opposite of symmetric molecules.
Because the velocity is proportional to the length of the
asymmetric chain, longer chains are needed to overcome
a big energy barrier. Many hands make light work. The
rate of motion for the bulky tail segment, or ball, is

M SSj

= J[1 — exp{—&S;}]"
The factor U represents the dimensionless barrier energy,
which is the cost of pulling a large group through a small

loop in the gel. Assuming S; = 5j, the rate may be
estimated in the strong field regime as

Whan = Woes{M)e V. @)

Whati = Woe Y (6)

Extended chains tend to contract due to this bias. Equa-
tion (7) is found to agree quite well with simulations. For
long chains we shall be most interested in parameter sets
with the following: (i) U >> 1 such that the barrier is dif-
ficult to overcome without the help of elastic forces, (ii)
eN > 1 so chains tend to stretch significantly, and (iii)
€ = 1 so thermal motion can drive the length fluctuations
necessary to reequilibrate the head of the chain.

The approximation of near equilibration fails when
the tensile force is large compared to the barrier, since
then the tail will be in continuous motion. This means
that slack segments are constantly being introduced and,
ultimately, the velocity is limited by how rapidly these can
be turned into segments of length at the head of the chain
rather than how rapidly they can be created at the tail.
Excess slack segments amass near the head and ultimately
reduce M. To estimate this crossover length scale we
calculate the rate at which slack segments move through a
chain with average orientation s:

Wilack = Woes. ®)

At the crossover scale the natural rates Wyacx and Wyan
are equal, from which one obtains

Ncrit -~ eU, (9)

for the crossover length.

For N = N the quasiequilibrium assumption is no
longer valid and departures from Eqgs. (3) and (4) become
pronounced. In addition to slack segments accumulating
at the head, the orientation 5 is suppressed. Only those
segments near the head are readily reequilibrated due
to length fluctuations. Deeper in the chain, segments’
orientation cannot change because it is unlikely for the
chain to retract very much (many extrons must enter the
chain) in order to align itself in a new tube and new
direction. The penetration depth for reequilibration will
be even less if the chain is moving quickly; consequently,
the average orientation 5 decreases for more rapidly
moving chains.
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The asymmetric model can also be simulated with
Monte Carlo methods. Figure 2 shows the velocity as a
function of chain length for different values of £ and U.
The velocity in the direction of the field Vy is related to
the rate of Eq. (7) as

Vx = asWyan, (10)

where the 5 factor reflects the orientation of the tube.

Stronger field € orients segments at the head more ef-
ficiently [Eq. (3)] and depletes the chain of slack seg-
ments [Eq. (5)] so chains move more rapidly. Increasing
the size of the barrier U slows the chain and increases
the crossover length scale at which Eq. (7) fails. The
terminal velocity increases slightly in higher-dimensional
gels, but dimensionality does not play a major role. The
asymptotic independence of Vx on N —known as “band
collapse” in conventional electrophoresis—is still present
in this model, but only for N = exp(—U) [Eq. (9)] in-
stead of N = 1/e without the ball [2]. Thus this model
is complementary to conventional electrophoresis also in
the sense that good separation is not incompatible with
large fields.

In Figure 3 the effects of finite drift speed are evident
in the quantities m;,s; = m;/Q;, and Q;; these show (i)
the reequilibration penetration range at the head of the
molecule, which reduces the segment alignment from the
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FIG. 2. Simulation results for the velocity’s dependence on
chain length N for different parameters. d = 1 is the spatial
dimensionality, & measures the field strength, and U is the
energy barrier for the bulky end group to move. The estimate
for the velocity of well-equilibrated chains [Eq. (7)] is good
until chains are moving too quickly to adequately equilibrate
[Eq. (9)]. The asymptotic velocity depends only on & and d.
Typical simulations are 2 560 000 MCS after discarding 128 000
MCS.
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FIG. 3. Steady-state distributions m; = (y;), Q; = (y;),
and s; = m;/Q;. For this N = 200 chain, the simulation
parameters are d = 1, ¢ = 0.1, and U = 5.0 with simulation
averaging 2560000 MCS after discarding 128 000 MCS. The
finite velocity of drifting chains prevent the thermodynamic
equilibrium distributions [Egs. (3) and (4)] from being reached.
In particular, segments nearest the head are best equilibrated
by length fluctuations, but as the distance from the head
increases, so does the likelihood of drifting without further
reequilibration.

equilibrium value [compare with Egs. (3) and (4)] and (ii)
the finite density of extrons in the body of the chain.

Is a bulky end group of this type an experimental
possibility? We think it is possible because Ulanovsky,
Drouin, and Gilbert (UDG) have prepared asymmetric
DNA molecules [11]. These authors add the electrically
neutral protein streptavidin to one end of DNA but
find that mobilities in polyacrylamide gel are reduced
compared to the symmetric case, especially for long
chains. Polyacrylamide gels are dense, which means that
the passageways that the drifting chain must pass through
will be small. Their experimental results are explained
by the presence of passageways (loops) in the gel, which
are so small that the bulky groups become trapped even
though the rest of the chain can slip through. UDG
also study how long chains may be freed from traps by
alternating the direction of the applied field, a technique
known as field inversion.

Trapping of the bulky group can reverse the depen-
dence of velocity on length discussed in this paper, how-
ever, so experiments must be free of traps. Because of
the sensitive dependence, the barrier height should be as
uniform as possible to minimize the resulting spread in
velocity. This may prove to be the major experimental
obstacle. Two possible manifestations of trapless media
are dense polymer melts and artificial gels fabricated by
lithographic techniques [7]. Other groups have investi-
gated chain molecules in solution with broken head-tail
symmetry both experimentally [12] and theoretically [13].

As seen above, the dependence on the chain length of
an asymmetric chain’s electrophoretic mobility can differ
significantly from symmetric chains. This is because
a slow bulky end group—the “ball”’—always follows
the rest of the chain. The mobility’s dependence on
chain length can be understood in terms of theoretical
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arguments, which are realized in our simulation results.
We suggest that experiments in this parameter regime may
benefit from improved resolution for long chains.
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