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Avalanches, Barkhausen Noise, and Plain Old Criticality
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We explain Barkhausen noise in magnetic systems in terms of avalanches of domains near a
plain old critical point in the hysteretic zero-temperature random-field Ising model. The avalanche
size distribution has a universal scaling function, making nontrivial predictions of the shape of the
distribution up to 50% above the critical point, where two decades of scaling are still observed. We
simulate systems with up to 1000 domains, extract critical exponents in 2, 3, 4, and 5 dimensions,
compare with our 2D and 6 —e predictions, and compare to a variety of experiments.

PACS numbers: 75.60.Ej, 64.60.Ak

When materials are pushed, they can yield in differ-
ent ways. Some crackle: they transform through a series
of pulses or avalanches. In many systems, the behavior
of these avalanches is unaffected by thermal fluctuations:
one domain triggers, pushing some of its neighbors to trig-
ger, in a deterministic process dependent on the static,
quenched disorder in the material (and on the stress his-
tory). The statistics of Barkhausen noise (the avalanches
seen in magnetic materials as the external magnetic field is
ramped up and down) has been extensively studied exper-
imentally [1—11]. We suggest that the zero-temperature
random-field Ising model [12,13] provides a universal,
quantitative explanation for many of these experiments.

A typical experiment will collect a histogram of pulse
sizes, times, or energies. The distribution will follow a
power law, which cuts off after two to several decades—
much broader than any observed morphological feature
in the materials. An explanation for the experiment
must involve collective motion of many domains; it must
provide an explanation for the power-law scaling regions,
and it must provide an explanation for the cutoff

Figure 1 shows the distribution D;„,(S, R) of avalanche
sizes integrated over the field 0, for our model in 3D
(discussed already in Ref. [12]), at several values of the
microscopic disorder R. The model is a collection of
domains s; = +. 1 coupled to an external field 0, a lo-
cal random field f; (due to random anisotropies, grain
morphology, or other defects) chosen from a distribution

p(f) = exp( —f /2R )/$2vrR of standard deviation R,
and to its nearest neighbors s~ with an energy of strength
J = 1. The domain s; flips over when the net local field
F; —= f, + H + Jg«sj seen at site i changes sign. Be-
cause of the nearest-neighbor interaction, a flipping spin
often causes one or more neighbors to flip also, thereby
spawning a whole avalanche of spin flips. Figure 1 shows
the distribution of avalanche sizes found by integrating as
the external field H(t) is raised adiabatically from —cc to cc

(the field is thus constant during the individual avalanches).
Notice three things about Fig. 1. (1) The distributions

follow a power law, which cuts off after two to several
decades. (2) The cutoff appears to diverge at a critical

10

10

10
Q

10

10
10

I I

10 10
Avalanche size (S)

I

10

FIG. l. Avalanche size distribution curves in 3 dimensions
integrated over the external field. From left to right, the first
three curves are for system size 320' and disorders 4.0, 3.2,
and 2.6. They are averages over different intial random field
configurations. The last curve is a 1000' run at R = 2.25,
where R, = 2.16 and r = (R —R, )/R The sizes plotted .are
large enough that there is no dependence of the cutoff position
on the system size. The inset shows the scaling collapse of
curves in 3D. The disorders range between 2.25 and 3.2;
the top curves at R = 3.2 show noticeable 10% corrections
to scaling. In the main figure, the avalanche size distribution
curves obtained from the fit to this data (thin lines) are plotted
alongside the raw data (thick lines). Notice that the scaling
theory is predictive up to R = 3.2, 50% above R, . The
long-dashed straight line is the expected asymptotic power-law
behavior s . Notice that it does not agree with the measured
slope of the raw data.

value of the disorder R„which we estimate in three
dimensions to be 2.161. (3) The critical region is large.
While the true power-law distribution is only obtained at
R, = 2.16, we get avalanches with more than a hundred
domains all the way up at R = 4. This suggests that
experiments can see decades of scaling without working
hard to find the critical disorder. Several decades of
scaling without tuning a parameter need not be self-
organized criticality: it can be vague proximity to a plain
old critical point.

Notice four more things about Fig. 1. (4) The straight
line lying askew below the numerical data is our extrap-
olation to R = R, from scaling collapses, for the asymp-
totic power law D;„,(S, R, ) —s (' P ). The exponent
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TABLE I. Critical exponents obtained from numerical simulations [12,15] and experiments on Barkhausen noise in different
magnetic materials (Fe, alumel, metglass [2], NiS [4], SiFe [5—7] 81% NiFe [8], A1SiFe [9], and FeNiCo [10]). The sample
shapes were mostly wires. The quoted exponents were experimentally obtained from the pulse-area distribution in a small bin
of the magnetic field H (exponent r), the pulse-area distribution integrated over the entire hysteresis loop (r + o P6), the
distribution of pulse durations in a small bin of H [(r —1)/o. vz + 1], the distribution of pulse durations integrated over the
loop [(r + rrPB —1)/crvz + 1], the power spectrum of the pulses in a small bin of H [(3 —r)/ovz], . the power spectrum
of the pulses integrated over the hysteresis loop j[(3 —(r + rrPB)]/rrvz], and the distribution of pulse energies in a small bin
of H [(r —1)/(2 —a vz) + 1]. Notice that these experiments are mostly done in geometries which minimize the effects of
demagnetization fields.

Exponents

r + rrPB
(r —1)/o vz + 1

(r + o PB —1)/o. vz + 1

(3 —r)/o. vz
[3 —(r + o-PB)]/o. vz
(7 —1)/(2 —o-vz) + 1

Simulation in 3 dimensions

1.6 ~ 0.06

2.03 ~ 0.03
2.05 ~ 0.12

2.81 ~ 0.11
2.46 ~ 0.17
1.70 ~ 0.10
1.42 ~ 0.04

Experiments in 3 dimensions

1.74, 1.78, 1.88 [2];
1.5 ~ 0.5 [4];
1.33 [10];
1.5 —1.7 [5]
1.73 —2. 1 [8]
1.64, 2.1, 1.82 [2];
1.7 —2 [5]
2.28 [8]
Around 2 [2,9]
1.6 [6,7]; 1.8 [11]
1.44, 1.58, 1.60 [2]

r for the distribution at fixed H is shifted by o PB by
the integration over H. (Only near a critical value H,
do large avalanches occur. The cutoff in the avalanche
size at R, goes as IH —H, ~'/ P: rr gives the cutoff
dependence with R —R„and P and 6, as usual [12],
give the singularities of the magnetization with R —R,
and H —H„respectively. The exponent for any quantity
varying H at R, is given by multiplying I/PB by the
exponent for the singularity varying R at H, .) The
obvious experimental method of taking the slope on the
log-log plot gives the wrong answer until many, many
decades of scaling are obtained. (5) The inset shows the
collapse of the data onto a scaling function

27;„,(s (R —R,)/R) = limg ~ s'+ D;„,(S,R),
(1)

which is a universal prediction of our model: real exper-
iments rescaled in the same way should look the same
(apart from overall vertical and horizontal scales). This
scaling function is quite unusual: it grows by a factor of
over ten before cutting off. This bump is the reason that
the experiments take so long to converge to the asymp-
totic power law. To make a definite prediction, we have
phenomenologically fit our curve [x = s (R —R,)/R]

X);„,(x) = (0.021 + 0.002x + 0.531x —0.266x

+ 0.261x ) exp( —0.789x ), (2)
where we guess the error in the curve to be less than
10% within the range 0.2 ( x ( 1.2. (6) In the main
figure, the scaling form passes through our data quite
well, even far from R, . The scaling theory is predic-
tive for curves with only two or three decades of scal-
ing. The critical region starts when the correlation length
(and hence the avalanche size cutoff) becomes large—

not only when the pure power law takes over. Using
Eqs. (1) and (2) and the values cr = 0.24 ~ 0.02 and
r + o.P6 = 2.03 ~ 0.03, an experimentalist should be
able to fit any single histogram of avalanches, shifting
only the overall vertical and horizontal scale factors. (7)
Only by collapsing curves at several values of the disor-
der R were we able to extract accurate critical exponents.
We suggest that experimentalists try varying some param-
eter of their system (annealing time or temperature, grain
size, impurity concentration, etc.) and observe the result-
ing cutoff dependence. Any family of histograms thus
generated should, near the critical point, be fit with three
parameters (horizontal scale, vertical scale, and R, ).

A comparison of our predicted exponents with power
laws extracted from a number of experiments on magnetic
Barkhausen noise in bulk three-dimensional systems is
shown in Table I. Only one of the experiments [8] varied a
parameter; they varied the annealing time and saw a shift
in the cutoff, but did not extract a critical annealing time
or do scaling collapses. The range of values for r + o.P6
observed in the experiments is compatible with the range
of log-log slopes we observe due to the unusual scaling
form for the integrated avalanche size distribution D;„t
discussed above.

The largest set of experiments measure the avalanche
size distribution in a narrow range of fields (i.e., with-
out averaging over the entire hysteresis loop): their power
laws fits are a measure of the critical exponent
Thescaling function for the nonintegrated avalanche size
distribution [12],we find, does not have a bump. The ex-
perimental measurements for r are close to our numerical
estimate.

The other experiments (pulse durations, power spec-
tra, and pulse energies) introduce a new exponent
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combination a.vz. The correlation length exponent v

gives the divergence of the characteristic spatial extent
of avalanches with R —R„and vz gives the divergence
of the avalanche durations with R —R, . The critical
exponent z occasionally can depend on the details of
the spin dynamics [15]; it is not even clear whether
our simulation must have the same value of z as our
e expansion. Nonetheless, the agreement between our
predictions and the measured values are about as good as
the agreement between the different measurements.

We have also investigated the application of our model
to other systems. Many experiments are done in effec-
tively two-dimensional systems (magnetic hysteresis [16],
avalanches as the field is swept in superconductors [17],
and avalanches as helium is injected into Nuclepore [18]);
our 2D explorations are still rather preliminary. Our
model does not fit the avalanche size distributions mea-
sured in 3D martensitic transitions as the temperature is
ramped [19]:Their measurement of the pulse duration ex-
ponent (~ + o.P6 —1)/o vz + 1 —1.6 is significantly
different from our prediction of 2.81 ~ 0.11, possibly due
to long-range elastic interactions. Full explanations about
the various exponent combinations measured in different

systems and detailed discussions of experiments and sys-
tems [20] are forthcoming.

Figure 2 shows the results for five of our exponents
(~ + tTPB, ~, 1/v, o-v, and o.vz) measured in 2, 3, 4,
and 5 dimensions. (From these one can get P and 6
separately using the exponent equality [21] ~ + o.P 6 =
2 + o.P.) Our previous simulations in 3 dimensions
[12] for sizes up to 200 gave estimates of z and 1/v
which are significantly different from the values in Fig. 2
because of large finite size effects. We measure the
exponents in the (unphysical) dimensions four and five in
order to test our renormalization-group predictions [13,21]
for the behavior near six dimensions. First, notice that
the numerical values converge nicely to the mean-field
predictions as the dimension approaches six, and that the
predictions of our 6 —e expansion do remarkably well.
(The primary role of the renormalization-group treatment,
of course, is to explain why scaling and universality
might be expected in these systems. ) The short-dashed
lines for 1/v show three different Borel resummations
[22] of the series to fifth order in e: By mapping our
model to all orders [21] onto the regular Ising model in
two lower dimensions [23], we have been able to use
[22] the series known to order e for v. The long-
dashed lines are predictions for the other exponents to
first order in e. These exponents have no equivalent in
the equilibrium model: We have developed [21] a new
method for calculating them using two replicas of the
system.

Second, notice the exponents in two dimensions. We
conjecture [21]that the 2D exponents will be r + er p 6 =
2, r = 3/2, 1/v = 0, and rrv = 1/2. It is likely that
two is the "lower critical dimension" for our system,
below which all avalanches will be finite except at zero
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disorder. We must mention that our firm conjectures
about the exponents in two dimensions must be contrasted
with our lack of knowledge about the proper scaling
forms. We have used three different scaling forms [14],
and have obtained values for the critical disorder that
are either 0.54 or 0, and values for 1/v of 0.15 and 0,
respectively. Amazingly enough, the exponents plotted in
Fig. 2 were largely independent of which scaling form we
used. The error bars shown span all three ansatze, and
are compatible with our conjectures above. Vives et al.
[24] have measured the critical exponents and disorder in 2
dimensions for this model. Their values differ significantly
from ours for R, and substantially for 1/v (in particular,
we found that all the avalanches are finite well below their
value of R,). This is easily explained: At the lower critical
dimension, things can asymptote to their thermodynamic
values very slowly so finite size effects can be large. Their
simulation was done for system sizes of 1002, while our
system size is typically 5000 .

We are not the only ones to model avalanche behav-
ior in disordered magnets. There has been much work on
depinning transitions and the motion of individual inter-
faces [25,26]; our system, with many interacting interfaces,
perversely seems much simpler to analyze. Many have
studied related models with random bonds [24,27] and ran-
dom anisotropies; random fields are actually rather rare

FIG. 2. Numerical values (filled symbols) of the exponents
T + o.p6, 7, 1/v, o vz, and o v (circles, diamond, triangles
up, squares, and triangle left) in 2, 3, 4, and 5 dimensions.
The empty symbols are values for these exponents in mean
field (dimension 6). Note that the value of v. in 2D was not
measured. The empty diamond represents the conjectured value
(see text). We have simulated sizes up to 7000', 1000', 80,
and SO', where for 320, for example, more than 700 different
random field configurations were measured. The long-dashed
lines are the e expansions to first order for the exponents
w + etp8, r, o vz, and o.v. The short-dashed lines are Borel
sums [22] for 1/v. The lowest is the variable-pole Borel
sum from LeGuillou and Zinn-Justin [22], the middle uses the
method of Vladimirov et aI. to fifth order, and the upper uses
the method of LeGuillou et al. (but without the pole and with
the correct fifth order term). The error bars denote systematic
errors in finding the exponents from collapses of curves at
different values of disorder R. Statistical errors are smaller.
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in experimental systems. We now believe on symmetry
grounds that all these systems are in the same universality
class (as argued numerically [24] and previously shown
for depinning [26]). The external field H, at t.he criti-
cal point breaks the rotational and up-down symmetries
of these models (and of the experiments), and the spins
which fiip far from the critical point [roughly M(H, )] act
as random fields. Long-range forces [10] and correlated
disorder (e.g. , dislocation lines) likely lead to closely re-
lated but distinct universality classes.

This paper gives definitive quantitative measurements
from simulations of up to 10 spins for the model de-
scribed in [12]. We show that these results are consis-
tent with the predictions of the e expansion [13,21]. The
comparison to experiments showing Barkhausen noise is
promising, and we argue that although the microscopics
varies for different experiments, they all belong to the
same universality class.
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