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Theory for the Excitation Spectrum of High-T, Superconductors:
Quasiparticle Dispersion and Shadows of the Fermi Surface
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Using a new method for the solution of the fluctuation exchange approximation equations, which
allows the determination of the self-energy Xk(cu) of the 2D one-band Hubbard model on the
real frequency axis, we calculate the doping dependence of the quasiparticle excitations of high-T, .

superconductors. We obtain new results for the shadows of the Fermi surface, their dependence on
the deformation of the quasiparticle dispersion, an anomalous cu dependence of ImXk(co), and a related
violation of the Luttinger theorem. This sheds new light on the influence of short range magnetic order
on the low energy excitations and its significance for photoemission experiments.

PACS numbers: 74.25.Jb, 71.27.+a, 79.60.—i

Despite enormous progress, the electronic excitation
spectrum of the high-T, superconductors is still far from
being understood [1]. The opening of a spin density gap,
the variation in spectral weight as function of momentum k
[2], and the pronounced deformations of the quasiparticle
dispersion found by recent angular resolved photoemission
experiments [2—6] rellect the strong inliuence of the elec-
tronic correlations on the low energy excitations. Here,
the observation of shadows of the Fermi surface (FS) for
Bi2Sr2CaCu20s+s [5] by Aebi et al. and their relation to
short range antiferromagnetic fIuctuations in the cuprates
is currently most intensively debated [7,8].

The occurrence of shadow states for a system without
long range antiferromagnetic order was originally pro-
posed by Kampf and Schrieffer [9]. Using a phenomeno-
logical ansatz for the spin susceptibility, they argued that
for sufficient strong antiferromagnetic correlations a cou-
pling of states k and k' with ~k' —k —Q~ ( s

' and

Q = (~, 7r) might lead to distinct shadow states in pho-
toemission experiments. From their calculation one can
estimate that the magnetic correlation length $ has to be ap-
proximately 20 lattice spacings to obtain observable satel-
lite peaks. This is much larger than the correlation length
deduced from neutron scattering experiments [10], which
is of the order of a few lattice spacings. Therefore, it was
stated in Ref. [7] that the observations of Aebi et al. cannot
be of antiferromagnetic origin.

In this Letter we present the quasiparticle excita-
tion spectrum of the one-band Hubbard model in the
normal state using a new numerical method for the self-
consistent solution of the fluctuation exchange approxima-
tion (FLEX) [11,12] on the real frequency axis. For the
first time, we obtain the low energy shadow states and si-
multaneously a small correlation length s. Furthermore,
we find deformations of the dispersion at the wave vector
k = (m, 0) upon doping, an unusual momentum and fre-
quency dependence of the self-energy, and a violation of
the Luttinger theorem as a function of doping.

Since we expect spin fluctuations to be the dominating
low energy excitations in the doping region between

simple metallic and antiferromagnetic behavior, we use
in the following the FLEX approximation to investigate
the short range antiferromagnetic order in the cuprates.
This perturbative low energy approach is complementary
to the exact diagonalization (ED) [13] or quantum Monte
Carlo (QMC) studies [14,15], which gave deep insight
into the origin of the quasiparticles of strongly correlated
materials, but are limited to small finite systems.

In the FLEX approximation the self-energy X(k, i ta, ) of
the paramagnetic phase is related to an effective interaction
V(q, i'„)resulting from the self-consistent summation of
electron-hole ladder and bubble diagrams within the finite
temperature Matsubara formalism for fermionic frequen-
cies cu„[16].In general the FLEX equations are solved
on the imaginary frequency axis, because of the simple
mathematical structure of the Green's functions and the
straightforward applicability of the numerically very effec-
tive fast Fourier transformation (FFT). Unfortunately, reli-
able information about the interesting dynamical excitation
spectrum that is given on the real frequency axis can only
be obtained by analytical continuation of the self-energy
X(k, its„)or the electronic Green's function G(k, isa„).
This bears enormous numerical problems and smears out
important fine structures. Therefore, we developed a new
numerical method for the direct calculation of the elec-
tronic self-energy X(k, ca + i0+) on the real axis [17].
Our approach treats the FLEX equations self-consistently
for complex frequencies g = ~ + iy with small but fi-
nite imaginary part y ( ~T, where T is the temperature.
Then, the analytical continuation to the real axis y ~ 0+
is numerically well defined. We strongly believe that with-
out our highly accurate algorithm the new physical results
presented below could not have been obtained [18].

In the following, we apply our approach to the one-
band Hubbard Hamiltonian that is the minimal model for
the Cu02 planes. The bare dispersion is given by ek =
—2t[cos(k, ) + cos(k~)] —p, with nearest neighbor hop-
ping element t = 0.25 eV and chemical potential p, . The
local Coulomb repulsion is U = 4t [12,19]. The ac-
tual calculations presented in this paper are performed
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on a (64 X 64) square lattice in momentum space by
using 4096 equally spaced energy points in the inter-
val [—30t, 30t] leading to a low energy resolution of
0.014t = 4 meV.

In the inset of Fig. 1, we show results for the density
of states g (cu) for various doping values x = 1 —n and
T = 63 K. Here, n is the occupation number per site.
We find for larger doping a rigid bandlike behavior, but
for smaller doping a pseudogap is visible as a precursor
of the spin density wave gap. From the asymmetry with
respect to the pseudogap, a transfer of spectral weight
from high energy to low energy scales [20] can be seen.
To check the influence of finite size effects we compared
our data with results obtained from systems with different
lattice sizes. For a (32 X 32) lattice the pseudogap
gets considerably smaller, whereas for a (128 X 128)
system it becomes slightly larger. Our finite size analyses
showed that all physical conclusions of this paper and, in
particular, the shadow states are not influenced by finite
size effects. In addition, we find that our results are not
sensitively dependent on the temperature in the region of
interest, because the characteristic energy scales are of the
order of 700 K.

In Fig. 1, we show the momentum resolved spectral
1

density A(k, or) = ——ImG(k, co) for k points between
the (m, 0) and (vr, ~) point for x = 0.12. The k point
(7r, vr/8) is shifted by Q with respect to the main FS,
where one would expect the shadows of the FS induced by
antiferromagnetic correlations. Indeed, besides the main
peak above the Fermi energy at cu = 0 small satellite
peaks can clearly be observed below the Fermi level.
Furthermore, the satellite of the spectral density at k =
(~, 7r/8) is closest to the Fermi energy, where it merges

0.5—

with the main band. Note that these satellites approach
the Fermi level up to cu = 20 meV and consequently can
be detected in a fixed energy scan of the Brillouin zone
with energy width of the order of A~ = 30 meV as in
the experiment [5]. The intensity of the shadow states of
these k points roughly agrees with Ref. [5]. The width of
the shadow structure in k space, estimated by considering
the number of k points whose satellites contribute signifi-
cantly to the spectral density, was found to be Ak = 7r/5.
This is in good agreement with the experimental result
Ak,„z= 7r/4 Most i.nterestingly and in distinction to the
phenomenological predictions by Kampf and Schrieffer
we obtain a magnetic correlation length $ = 2.5 lattice
spacings, which is in very good agreement with neutron
scattering experiments [10]. Here, we calculated g from
the k dependence of the spin susceptibility by neglecting
vertex corrections of the irreducible particle hole bubble.
Recently it was discussed [19] that this is a reasonable ap-
proximation that slightly overestimates the magnitude of
the spin susceptibility.

In order to investigate the interdependence of shadow
bands and antiferromagnetic correlations, we show in
Fig. 2 results for the quasiparticle dispersion obtained from
the maxima of the spectral density in the neighborhood of
the (m, 0) point. For larger doping (dashed line), the sad-
dle point, responsible for the Van Hove singularity, is visi-
ble. However, for smaller doping (solid and open squares)
pronounced deformations of the dispersion occur. The
dispersion of the states with high spectral weight (solid
squares) is Ilattened at an energy cu = 25 meV slightly
above the Fermi energy and is suddenly repelled from
this energy. This is a precursor of the large spin density
gap at the (vr, 0) point. However, the range in k space
where the bands are flat is slightly smaller compared
to ED calculations [13] and observed experimentally in

Bi2SrzCaCu20s+& [21]. Furthermore, new quasiparticle
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FIG. 1. Spectral density for k points between the (vr, 0) and

(7r, 7r) point, i.e., k = (vr, —m') with l = 4, . . . , 10. The small
satellites, indicated by the arrows, are the shadows of the Fermi
surface. The inset shows the density of states g(cu) for various
doping values and T = 63 K.
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FIG. 2. Quasiparticle dispersion in the neighborhood of the
(vr, 0) point for different doping concentrations. For smaller
doping (x = 0.12) two bands exist near the Fermi energy. The
dispersion of the main band (solid squares) is similar to the
highly doped system (dashed line). Considering both, the main
band and the shadow band (open squares), one recognizes the
evolution towards the two branches of the dispersion in an
antiferromagnetic background (solid lines).
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states with low spectral weight (open squares) can be ob-
served in Fig. 2. These states, which are visible for larger
doping only far away from the Fermi level (not shown), ex-
ist for low excitation energies and form the shadows of the
FS, but never cross the Fermi level. The magnetic origin of
the dispersion can also be supported by performing a spin
resolved FLEX approximation with a given antiferromag-
netically ordered magnetic moment of m, = 0.21 (which
is the Hartree-Fock value). The resulting dispersion (solid
line) is a continuation of the situation in the paramagnetic
phase for low doping. Therefore the shadow states are a
precursor of the antiferromagnetic state for finite but very
low excitation energies and are present in a system without
long range antiferromagnetic order.

In distinction to the idea of Kampf and Schrieffer [9],
the satellites of our calculation are not produced by new
poles of the Green's function, but purely by quasiparticle
decay processes due to the strong coupling of states with
momentum k at the FS and states k + Q at its shadow. In
order to demonstrate the effects of this coupling for states
close to the Fermi energy we show in Fig. 3 ImX, k(co = 0)
for the doping concentrations x = 0.16 and x = 0.12. For
even larger doping (not shown) this quantity is found to
be maximal for states at the FS. For intermediate doping
(x = 0.16), ImXk(or = 0) is strongly enhanced on the FS
and more interestingly on its shadow. Nevertheless, no
shadow states in A(k, cu) are observable for this doping
concentration. For small doping (x = 0.12), ImXk(co =
0) is dominated by the contributions of the shadow states.
The enhancement of the low energy scattering rate for all
k points shifted by Q relative to the main FS leads to
satellite peaks as in Fig. 1 on the whole shadow of the FS.
These effects are in our calculation mostly pronounced for
k = (vr, 7r/8), whereas on the diagonal the intensity of the
shadow states is much weaker, but clearly visible.

The intensity of a shadow peak at k + Q is higher
the larger the antiferromagnetic correlation length as al-
ready discussed by Kampf and Schrieffer [9]. However,
this intensity is also determined by the amount of states
k' around k, which are coupled to k + Q by antiferro-
magnetic spin fluctuations. Here, only states k' with en-

(O,x) 0.0
~
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~

~

~

~

k=(0,0)

ergies ek close to the Fermi level can participate in the
formation of a shadow at k + Q. Since the correlation
length was found to be small, it is necessary to have large
effective masses to form a shadow state. Consequently,
the shadow states are strongly dependent on the deforma-
tion of the dispersion due to the electronic correlations.
Hence, the existence of Hat bands explains our results that
the shadow peak is largest near (7r, 7r/8)

Although we believe that our model dispersion captures
the important physical mechanism of the shadow band
phenomenon, an improved agreement with the experiments
requires an improvement of the quasiparticle dispersion
near (m. /2, ~/2) and a more realistic description of the
topology of the FS [4]. This might be achieved by taking
into account next nearest neighbor and other hopping
elements [22].

A further interesting consequence of the occurrence of
shadow states is the nonconservation of the volume nL«t
inside the FS for small doping. In Fig. 4, results are shown
for the FS for different band fillings in comparison with
that for U = 0. The FS is obtained from the k points,
where ek + ReXk(0) = 0. The changes of the FS are0

rather small, but a tendency towards an enhanced nesting
is clearly visible. For larger doping, the Luttinger theorem
(LT) is fulfilled. However, for smaller doping the volume
of the FS decreases compared to the U = 0 case. Calcu-
lating nL«t for different doping we get nLgtt 0.800 = n

for x = 0.20 and nL«t = 0.869 ~ n for x = 0.12. This
violation of the LT [23] results physically from a trans-
fer of particles to the additional shadow states outside the
main FS. Note that this result is no artifact of the FLEX
approximation itself. Since this diagrammatic approach is

(a, 7t;) (O,z)

(0,0) (tt, O)

(0,0) (~,0) (0,0) (z, O)

FIG. 3. Imf k(cu = 0) for two doping concentrations in the
first quadrant of the Brillouin zone in a linear grey scale, where
dark regions correspond to large decay rates. The intensities
for each plot are normalized by its maximum value.

FIG. 4. Fermi surface in the first quadrant of the Brillouin
xone in comparison with that of the uncorrelated system for
two different doping concentrations. The dashed (solid) lines
correspond to U = 0 (U = 4t) The insets sh.ow the frequency
dependence of ImXk(co) for different doping values. For
x = 0.12 the shadow of the FS is shown.
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conserving in the sense of Baym and Kadanoff, the valid-
ity of the LT depends purely on the frequency behavior of
the imaginary part of the self-energy [24]. In the insets
of Fig. 4, we show Imgk(~a) for various k points. For
small doping, our results exhibit a very anomalous k and
~ dependence as can be seen in the upper right inset of
Fig. 4. At the FS, the transition from a low frequency co

to a linear in ~ behavior occurs below 5 meV. Moreover,
at k = (7r, vr/8), where the shadow band approaches the
Fermi level, we find a double well structure reflecting the
strong coupling of the shadow states to the main FS as
precursor of the singular behavior of ImXk(ca) in the anti-
ferromagnetic state [9]. This anomalous frequency depen-
dence violates the LT, and the volume of the FS decreases
as shown in Fig. 4. A first experimental indication for this
phenomenon was recently found by Liu et al. [3]. For
larger doping, our theory yields the conventional Fermi-
liquid behavior ImXk(ca) ~ (co + cT ), where c is a con-
stant. A clear demonstration of this trend is given in the
lower left inset of Fig. 4. Here, Iml, k(ca) is considerably
smaller for cu = 0, much less k dependent and propor-
tional to ~ up to much higher frequencies. Consequently
no violation of the LT can be observed.

In conclusion, using a new method for the solution of
the FLEX equations on the real frequency axis, we in-
vestigated the fine structure of the excitation spectrum for
high-T, superconductors in the framework of the one-band
Hubbard model. We obtained for the first time within a mi-
croscopic approach using a model dispersion shadows of
the FS without long range antiferromagnetic order. These
shadow states are induced by dynamical spin fluctuations
and are due to the fact that for k points above the Fermi
momentum spectral weight is transferred below the Fermi
energy as a precursor effect of the oncoming antiferromag-
netic phase transition. In addition, these shadows occur
for small excitation energies in agreement with the ex-
periments by Aebi et al. [5]. All this shows clearly that
the quasiparticle properties of the cuprates are closely in-
tertwined with the strong but short ranged antiferromag-
netic correlations [25]. In a forthcoming publication, we
use our method to discuss the development of the shadow
states below T,. and their significance for photoemission
experiments [26].
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with P. Aebi.

Note added. —After submission of the present Letter,
Haas, Moreo, and Dagotto [27] published a work investi-
gating antiferromagnetically induced photoemission bands
by using QMC and ED techniques. Similar to our study
they observed transfer of spectral weight below the Fermi
energy. However, they were not able to detect the shad-
ows of the Fermi surface within the experimental energy
width due to their limited resolution in momentum space.
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