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Three-Dimensional Disordered Conductors in a Strong Magnetic Field:
Surface States and Quantum Hall Plateaus
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We study localization in layered, three-dimensional conductors in strong magnetic fields. We
demonstrate the existence of three phases —insulator, metal, and quantized Hall conductor —in the
two-dimensional parameter space obtained by varying the Fermi energy and the interlayer coupling
strength. Transport in the quantized Hall conductor occurs via extended surface states. These surface
states constitute a subsystem at a novel critical point, which we describe using a new, directed network
model.
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The integer quantum Hall effect is one of the most
striking phenomena observed in two-dimensional electron
systems [1]. Central to it is the existence of phases
in which the Hall conductance is constant over a range
of values for the Fermi energy. In a quantum Hall
phase, electron states at the Fermi energy are Anderson
localized within the bulk of a sample, but there exist
extended states at the edge of a sample, which are
robust against scattering by disorder. It is natural to
ask whether quantum Hall phases and edge states are
unique to two-dimensional electron systems, or whether
they have analogs in three-dimensional conductors.

An obvious way to approach this question is to consider
a conductor consisting of layers perpendicular to the
applied magnetic field, each of which, in isolation, would
exhibit the integer quantum Hall effect. If the interlayer
coupling is weak, it is reasonable to anticipate, with
increasing Fermi energy, the sequence of phases sketched
in Fig. 1: insulator, metal, and quantized Hall conductor.
Our aim in this Letter is to investigate theoretically this
phase diagram and, in particular, the nature of surface
states in a three-dimensional quantized Hall conductor.

Studies of three-dimensional conductors in quantizing
magnetic fields have an extensive history [2]. A variety
of situations can be engineered in layered semiconductors.
Multiple-quantum-well structures with thick barriers
between the wells represent the limiting case of uncoupled
layers, and simply constitute a number of independent
two-dimensional systems in parallel [3]. By contrast, the
inhuence of interlayer coupling is probed in superlattices
with appreciable dispersion of the electronic spectrum
in the direction perpendicular to the layers. Accurately
quantized Hall plateaus are observed [4], as well as an
oscillatory variation, with inverse magnetic field, of the
transverse and longitudinal diagonal elements of the
conductivity tensor, a. and o «, suggesting an alter-
nating sequence of quantized Hall phases and metallic
phases, as in Fig. 1. It is possible that some of these

features persist in homogeneous semiconductors. In
narrow gap semiconductors in the strong magnetic field
limit, a temperature independent o. ~, in conjuction with
a.„and o.« that both decrease at low temperature [5,6],
has been interpreted as an incipient Hall plateau. The
foregoing examples are of particular interest in the present
context, since it is likely that they show mainly the
effect of disorder on single-particle motion. In other
settings [2], notably in the spin-density wave phases
of Bechgaard salts [7], many-body correlations play an
essential role.

The theoretical treatment of electrons in a disordered
potential and a magnetic field has appealing simplifica-
tions in the adiabatic limit, reached if the potential is
smooth and the field is strong [8]. These have been
exploited for three-dimensional conductors by Azbel [9].
Classically, there are three components to the dynamics,
with widely separated time scales. In the adiabatic limit,
the action associated with each component is indepen-
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FIG. 1. Schematic phase diagram and density of states p(F)
in energy F. for the lowest Landau levels of a layered, three-
dimensional conductor in a strong magnetic field.
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dently conserved. The shortest time scale is the period
of cyclotron motion about an instantaneous guiding cen-
ter; oscillations of the guiding center parallel to the mag-
netic field set the intermediate scale, and at long times
the trajectory followed in these oscillations drifts within
the plane perpendicular to the field. Quantization of
cyclotron and guiding center oscillations leaves a reduced
problem, involving only guiding center drift.

Our starting point is a simplified model for the quantum
mechanics of this guiding center drift in layered, three-
dimensional conductors. It is a natural generalization of
the two-dimensional network model for the quantum Hall
effect [10]:each layer of the conductor is represented by
a copy of the two-dimensional model, and adjacent layers
are coupled. Two such coupled layers have been studied
previously [11], as a representation of a spin-degenerate
Landau level, but the behavior of many layers together
has not been investigated before. In detail, the three-
dimensional model consists of a network of links, each
carrying probability Aux in the direction of guiding center
drift, which meet at nodes, where flux is scattered between
them. Every link is characterized by the phase shift that
an electron acquires on transversing it, and randomness
is introduced by choosing these phases independently
from a uniform distribution. For simplicity, the links
are arranged on a regular lattice, as illustrated in Fig. 2.
Scattering at a node can be specified by a transfer
matrix which relates ingoing and outcoming amplitudes
(A;„,A,„,) on one side of the node, to those (8;„,8,„„)on
the other. With an appropriate choice of gauge [10]

(
A,„~ cosh(0) sinh(0) & 8,„,

&~

A,«) sinh(t9) cosh(t9) ) 8;„)'

We choose the scattering parameter 0 to be the same
at all intralayer nodes, with a value 0& related to the
Fermi energy E by [12] E = In[sinh (0&)]. Similarly, we
take a second common value 02 at all interlayer nodes,
the tunneling amplitude being t = tanh(Oz). The model
therefore has a two-dimensional parameter space: (E, r).

We have investigated the phase diagram of this model
numerically, using standard transfer matrix techniques to
calculate the localization length in quasi-one-dimensional
samples, and a finite-size scaling analysis to extract the
bulk behavior [13]. In outline, the localization length is
finite throughout the parameter space for finite sample
cross section, diverges with cross section in the metal,
and has a limiting value at large cross section in the
insulator, hence allowing the phases to be identified. We
study systems of cross section M X M and length L for
M ~ 12 and L ~ 8 X 10, obtaining localization lengths
with statistical error ~1.5%. To concentrate initially on
the properties of bulk states, we apply periodic boundary
conditions in the directions transverse to L. As a simple
test of our approach, we have checked that we obtain the
same phase diagram from calculations with the layers of
the model arranged either parallel or perpendicular to L.

The results are displayed in Fig. 3. Without interlayer
coupling (t = 0) we reproduce properties of the two-
dimensional model: extended states exist only at the
Landau level center (E = 0). Nonzero coupling (t ) 0)
gives rise to a band of extended states, having a width
in energy, W(t), that increases with t For t «. 1, one
expects [14] W(t) ~ t' "'", where vzn is the critical
exponent for the divergence of the localization length s2D
in an isolated layer, and this form is consistent with our
data. In the model, bulk states in both the low- and high-
energy tails of the Landau level remain localized even for
the largest interlayer coupling investigated. We expect,
however, that if Landau level mixing is allowed, the
quantized Hall conductor will exist only for sufficiently
small interlayer coupling, and will give way to a single
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FIG. 2. The 3D network model. Full lines represent links,
which carry probability flux in the direction indicated by the
arrows. Dashed lines represent nodes. Ingoing (outcoming)
links on the I-z face are denoted by && ( ~ ).
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FIG. 3. Phase diagram of the 3D network model. Data
obtained at the points marked I, M, and Q are shown in Fig. 4.
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FIG. 4. Spectra of positive Lyapunov exponents, p„, n =
1. . . M2/2, at three points in the phase diagram, marked I
(C&), M (o), and Q (A) in Fig. 3, for sample size M = 10.
Inset: Amplitude distribution for the transfer matrix eigenvector
with the smallest positive Lyapunov exponent, in the quantized
Hall conductor. Squares represent links of the model and are
shaded according to the mean probability flux p carried by
that link: black, p ~ 0.04; grey, 0.04 ~ p ) 2.10; white,
2.10 ' ) p.

metallic phase at strong coupling. Similarly, we note
that, because the network model omits inter-Landau
level scattering, it cannot capture behavior in the strong
disorder or weak magnetic field limits, when extended
states presumably levitate in energy [15].

In order to investigate surface states in the model, we
compare the spectra of Lyapunov exponents in samples
with periodic and hard-wall boundary conditions. These
exponents characterize transmission of electron Aux by
a quasi-one-dimensional system: for a sufficiently long
sample, transmission in each scattering mode decreases
exponentially with length, at a rate given by the cor-
responding Lyapunov exponent. One expects surface
states, present only in the quantized Hall conductor
with hard-wall boundary conditions, to carry current
without backscattering in samples with large cross section
(M » 1), and hence to be associated with vanishing
Lyapunov exponents. We study samples with (using axes
defined in Fig. 2) their long side parallel to y, periodic
boundary conditions in the z direction, and either periodic
or hard-wall boundary conditions in the x direction. With
periodic boundary conditions, the Lyapunov exponent
spectrum is gapless in the metal, and has a gap (of size

for large M, where gii is the bulk localization length)
in both the insulator and the quantized Hall conductor.
There are only small changes in the spectra for the
insulator and metal on switching to hard-wall boundary
conditions, and we attribute these changes to finite-size
effects. By contrast, in the quantized Hall conductor this
switch has a dramatic influence on the distribution of
Lyapunov exponents, shown in Fig. 4. With hard-wall

boundary conditions, M of the (positive) exponents are
small, and decrease with increasing M, while the values of
the others are little altered, indicating that there are M sur-
face states. This interpretation is reinforced by examining
the eigenvectors of the transfer matrix corresponding to
the M smallest Lyapunov exponents (Fig. 4, inset): their
amplitude is concentrated overwhelmingly near the
sample surface.

Next, we focus on the subsystem of surface states by
considering the high-energy tail of the Landau level, where
the bulk localization length within our model is very short.
Then each layer supports an edge state, which is decoupled
from localized bulk states but coupled to edge states
in adjacent layers. Edge states in different layers carry
probability flux in the same sense, and we can represent
the surface using the two-dimensional directed network
model illustrated in Fig. 5, which incorporates randomness
via link phases, as in the three-dimensional model, and has
a single parameter, the tunneling amplitude between layers,
t = tanh(0z). This model is clearly highly anisotropic,
and represents an example of directed scattering, studied
previously in other contexts [16]. Consider a finite sample
in the form of a cylinder, of circumference C and height
I, with its axis parallel to the magnetic field. Charge
transport around the circumference is rather simple. It is
characterized by the Hall conductance, and the restriction
of scattering to the forward direction ensures that this
is quantized. Transport in the direction parallel to the
magnetic field is more subtle. We find that the system
is at a critical point, in the sense that the only length scale
is set by the system size itself. The average conductance
g«depends on the aspect ratio of the system, L/C. For
L/C « 1, the surface states have a finite conductance
per square, o~, which is a function of the tunneling
amplitude t, and g« = (C/L)cr . Proportionality of g„
to sample circumference C, rather than cross-sectional
area, is, of course, a signature of conduction by the
surface, rather than the bulk, and is a characteristic of the
quantized Hall conductor. In the opposite limit L/C » 1,
the system is quasi-one-dimensional, states have a finite
localization length s along the cylinder axis, and g„
decreases exponentially with L. The system is revealed to
be critical by the fact that g ~ C, with an amplitude ratio
A —= s /C. Remarkably, it is possible to calculate both o.
and A analytically.

FIG. 5. The directed network model. Full and dashed lines
represent links and nodes, as in Fig. 2.
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A = tz/(I —tz) . (3)

In order to check this result, we have evaluated the
amplitude A numerically, using cylinders of size C ~
64 and L ~ 10s, and extrapolating g/C to large C.
The calculated amplitude (not shown) coincides with
Eq. (3) to numerical accuracy (2%) over the entire range
investigated (0.02 ~ A ~ 400), suggesting that Eq. (3) is
probably exact.

Finally, we return to the three-dimensional model and
consider bulk critical phenomena at the transitions from
the metal to the insulator or quantum Hall conductor.
Since bulk states are localized in both the latter phases,
we expect the same critical behavior at each transition;
within the network model, this is guaranteed by an
exact symmetry, arising because higher Landau levels are
omitted. We calculate the localization length exponent
v for comparison with earlier results obtained from
other models of the metal-insulator transition in three
dimensions and strong magnetic field. We find, using
a standard analysis [13], v = 1.45 ~ 0.25, which is
consistent with the value v = 1.35 ~ 0.15, obtained both
for a layered system and a tight-binding model [19].
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To evaluate o ~, we express each element t;~ of the
C X C transmission matrix, t, between ends of the cylin-
der in terms of a sum over Feynman paths. Because of
the directed character of the model, self-intersecting paths
must wind at least once around the cylinder, and make no
contribution to the sum in the limit I. « C. Retaining
only those paths that do not self-intersect, it is straight-
forward to average ~t;~ ~

over the link phases. From this,
using the Landauer-Buttiker formula [17],we find

o-z ——(ez/h)tz/(I —t2) . (2)

To obtain the amplitude ratio A we first parametrize the
eigenvalues of t t as cosh (v„L/C), with v~ ~ v2 ~

. ~ vc. In the limit L » C, the (v„) are proportional
to Lyapunov exponents and therefore self-averaging; A =
v~ . Moreover, one expects [18] for n (( C that v„=
n v~. In the converse limit C && I., rigidity in the spectrum
of ttt suppresses fluctuations in the {v„),and one again
expects [18] that v, = nv~. In this case

I e 2
o. = lim lim ——g cosh (Lnv~/C) = —vt

Q~m P~oo hll= 1

Making the conjecture that the value of v~ is the same in
both limits, we find
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