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We explicitly evaluate the infinite series of integrals that appear in the
reformulation of the anisotropic Kondo model in terms of a one-dimensional Coulomb gas.

“Anderson-Yuval”
We do

this by developing a general approach relating the anisotropic Kondo model of arbitrary spin with the
boundary sine-Gordon model, which describes an impurity in a Luttinger liquid and tunneling in the
fractional quantum Hall effect. The Kondo solution then follows from the exact perturbative solution

of the latter model in terms of Jack polynomials.

PACS numbers: 72.15.Qm

It was shown some 25 years ago that the partition func-
tion of the anisotropic Kondo model could be expressed
as a power series in the impurity coupling [1,2]. Even
though the coefficients were given only as formal mul-
tidimensional integrals, this led to progress in the un-
derstanding of the Kondo problem. For example, this
enabled renormalization-group calculations to be done and
the phase structure determined [3]. In subsequent years,
various additional aspects of the problem were further un-
derstood by methods like the numerical renormalization
group [4], expansions around the low-temperature fixed
point [5], and by the Bethe ansatz [6,7]. Despite all
this progress, the problem is still not completely solved.
For example, the finite-temperature resistivity (which mo-
tivated Kondo’s analysis [8]) has yet to be calculated
exactly. Moreover, the coefficients of the perturbative
expansion still could not be evaluated explicitly.

This latter aspect highlights a general puzzle of the
Bethe ansatz approach. Its results are nonperturbative
and can determine physical quantities to arbitrary ac-
curacy by numerical solution of the nonlinear integral
equations. However, no technique is known for solv-
ing them systematically around the noninteracting fixed
point, so the small-coupling perturbative expansion can-
not be found analytically (except when T = 0). One can
find the coefficients only by fitting the full result numeri-
cally by a power series, and this gives accurate results
only for the first few coefficients. Moreover, the thermo-
dynamic Bethe ansatz equations are not continuous in the
anisotropy parameter g (even though the results are) and
are quite complicated for generic values of g. Therefore,
knowing the perturbative expansion explicitly would be
an easier way of doing calculations in many situations. In
this paper, we solve this problem and “do” the Anderson-
Yuval integrals at general g, by expressing them in terms
of infinite sums of ratios of gamma functions [9], which
can be easily evaluated numerically.

We derive a simple relation between the partition func-
tions of the Kondo model and another one-dimensional
quantum system, the boundary sine-Gordon (BSG) model.
These two models are each of considerable interest, and
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it is remarkable that they are simply related. Treating
them in the same framework requires the use of a quan-
tum group, which is a topic of current mathematical inter-
est. We show that the BSG model can be considered as
a particular anisotropic Kondo model where the boundary
spin is in a “cyclic” representation of the quantum group
SU(2),. The perturbative coefficients of both of these par-
tition functions can be expressed as the partition function
of a one-dimensional classical “log-sine” gas with posi-
tive and negative charges which have logarithmic interac-
tions. In the Kondo problem the charges must alternate in
sign in space, while in the BSG model they may occur in
any order. With unrestricted ordering, the partition func-
tion can be evaluated [9] by utilizing various properties
of Jack polynomials [10]. Since the functional relation
gives the appropriate Kondo coefficients simply in terms
of the BSG ones, it therefore allows their determination
as well.

We first review the BSG and Kondo perturbative ex-
pansions, and show how the BSG model can be expressed
as a Kondo model. Utilizing some results of [11], we
then derive the (nonperturbative) relation between these
partition functions, which gives one set of perturbative
coefficients in terms of the other. Both models have
physical applications. The Kondo model is realized in
various impurity compounds, and is also equivalent (in
the anisotropic case) to the dissipative quantum mechan-
ics of a particle in a double well [12]. The BSG model
describes tunneling through an impurity in a Luttinger lig-
uid (with application to fractional quantum Hall edges)
[13,14], while in dissipative quantum mechanics it corre-
sponds to an infinite number of wells [15].

The boundary sine-Gordon model describes a free
boson ¢ (o, 1) on the half-line o = 0 with an interaction
at the boundary o = 0. We study the problem at nonzero
temperature 7'; in the path integral this corresponds to a
system where Euclidean time (denoted by 7) is a circle of
periodicity 1/T. The bulk action is
g — 1

0 1/T
— 2 - 2
47Tgf0 dafo A0, ) + (9,871, (1)
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while the boundary action is

T
Sp = 2/\[ drcos[¢p(o = 0,7)]. 2
0

The coupling A is not scale invariant and interpolates be-
tween Neumann (A = 0) and Dirichlet (A — o) boundary
conditions on the boson.

Defining as usual the partition function via the
path integral as Z = [[d¢leS™» we introduce
Z =Z(A)/Z(A = 0). We can rewrite this as a se-
ries by expanding out exp(Sg) in powers of A. The
coefficients of this series are then integrals of correlators
in the free-boson theory. Using the bosonic propagator
on the edge of a half-cylinder with Neumann boundary
conditions,

(@0.1)$(0.7) = ~2gIn | - sinmT(r — 1) |
w
(k is the cutoff), one finds, for example,
) . , *2
(!0 =4 0.7y =| K sinwT(r — 7') I ‘.
wT

Using Wick’s theorem one finds the general correlators
as ratios of various C (7, 7') = [2sinwT(r — 7/)]*8. The
partition function is the series
A(27T\8
x = —( N ) BENE)

Z = 2 Z o s

TZn 1/T ,
7 ()2 fo ; dmidr]

ﬂ,-<1[C(T,-, Tl)C(Tj/‘, Tzl)]

ﬂi,k C(Ti’T/i) ’
where all indices run from 1 to 2n, and all integrals run
from O to 1/7 independently. This expression requires
regularization for g = 1/2, but is well defined otherwise.
The sum (3) is the grand canonical partition function
for a classical two-dimensional Coulomb gas of charged
particles restricted to lie on a (one-dimensional) circle
of circumference 1/T. The charges are *./2g, and the
whole gas is electrically neutral; x is the fugacity.

Series expressions were found for the Z,, [9] by ex-
panding the denominator of (4) in terms of Jack poly-
nomials [10], and using orthogonality relations of these
polynomials. Jack polynomials are indexed by a parti-
tion of an integer, so we define m = (m,my, ..., mm)),
where the m; are integers with m; = my--- = ma) = 0.
One finds [9]

n

1\ I'lgn + 1 —1i) + m,-)}2
Zow = (7 ,
’ (r<g>) 2 ,.Ul{r(g(n )+ 1+ m)

)
where the sum is over all m with /(m) =< n. The sum
converges only for g < 1/2, which is where the integrals
in (4) are well defined.

For n =1, the sum can be done (or the integral
can be done without Jack functions) giving Z, = I'(1 —

)

2g)/T?(1 — g). Notice that the divergence at g = 1/2
(the well-known “free-fermion point”) is just a simple
pole, so we can analytically continue around it to study
behavior for g > 1/2. In fact, it turns out that at
the free-fermion point only the first coefficient f, in
the expansion of the free energy (3 f2,x>" = —TIn2Z)
diverges, making it possible to analytically continue all
the Z,, to g > 1/2 [16]. It also turns out that there is
a simple pole in f3, at g = 1 — 1/(2n) whose residue
we can calculate. These poles are a signal that there
are logarithmic terms in the perturbative expansion at
g = 1 — 1/(2n), which can in fact be computed exactly
[16]. Thus at these values of g (including the free-
fermion point, which corresponds to the Toulouse limit
of the Kondo problem) the model is pathological in some
respects.

The perturbative expansion for the Kondo problem
found in [1,2] is closely related. The Kondo problem
is a three-dimensional nonrelativistic problem, with free
electrons antiferromagnetically coupled to a single fixed
impurity. By looking at s waves only, we restrict to
the radial coordinate and this becomes a one-dimensional
quantum problem where massless fermions (o, 1) (i =
1,2 are the spin indices) move on the half-line o =
0 with a quantum-mechanical spin S, at o = 0. The
interaction parameters are I,/ = I_; in the isotropic
case I, = I,. The impurity action is

YT +
Sp =D L fo dr ¢ (0,7)Sqofip;(0.7),  (6)
i,j,a
where the ¢ are the Pauli matrices. By a well-known
bosonization procedure [2], this can be rewritten in terms
of a free boson ¢ (x, r) with bulk action (1) and

/T '
Sg = 1+f dr(S+e?©” + He),
0

where I, has been absorbed into the definition of g. The
anisotropy is thus parametrized by g, with g = 1 the
isotropic case and g = 1/2 the Toulouse limit.

In the perturbative expansion, we get correlators of
exp(*i¢) like before. The crucial difference arises
from the S+. When the impurity has spin 1/2, we
have Si =82 =0, and only terms of the form
S+S8-S5S+S- ... survive in the perturbative expansion.
In the one-dimensional gas, this is the requirement that
charges alternate in sign. We define the partition function
of the spin-1/2 Kondo problem as Zx = 2Zx(1+)/Zx(0),
where the factor of 2 ensures that the entropy is In2 in the
noninteracting limit 7+ = 0. Thus

had g
Zr(xk) =2 + D (xx)*" Qo s xg = %(@1) .
n=1 K
The Q;, are the integrals in (4) times 2(n!)?, but where
the region of integration is restricted to be 0 = 7} =
71 =7y =<---7) = 1/T. The periodicity of the inte-
grand means that Z, = >, but the others are different.
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Our central result relates the partition functions of the
Kondo and BSG models. Defining g = exp(img), we
find that

Zkl(g — ¢ )x1Z(x) = Z(gx) + Z(qg"'x). (D)
One simple check is that the equation is consistent with
the fact that Z(x) = 1 in the isotropic case ¢ = —1.
Plugging in the perturbative expansions gives the Kondo
coefficients Q,, in terms of the BSG coefficients Z,,,. For
example,

4sin*(wg)Qs = —4cos*(mg)Zs + (Z2)%, ®)

16sin®(7g)Q¢ = sin’(3mg)Z¢ + (Z,)° sin’(7rg)

— [sin*(2mg) + sin*(7wg)]Z2Zs.  (9)
Using the series (5), we can easily find values for the
Z», and hence the Q,, for g < 1/2 by truncating the se-
ries and summing it numerically. For example, we have
0, =27, =T — 2g)/[T(1 — g)]*. We give some nu-
merically determined values for the higher coefficients in
Table L

As a check, some of the integrals were explicitly
evaluated using Monte Carlo methods; the agreement
is good. As discussed in [9], for g rational there are
relations between the numbers beyond those in (7); for
example, for g = 1/4, Qy, = Z,/2""'. Knowledge
of the first few coefficients Qj, provides a very good
numerical solution of the problem. The series can be
extrapolated using Padé approximants and for instance
the flow of the boundary entropy is reproduced fairly
accurately [9].

The proof of (7) uses the “quantum-group” algebra
SU(2)4, which is a one-parameter deformation of the
SU(2) algebra [17]. The three generators Sy, S—, and
S, have commutation relations

S, qiS:S~qSZ — qS— ,

g2 — g2

R
q q

Like SU(2), the quantum-group algebra has representa-

tions of any spin. A careful analysis shows that the

general anisotropic Kondo problem of arbitrary spin is

g% Siq % =qSy,

[S+,S,] =

TABLE I. Numerical values for the perturbative coefficients
Qon and Z,, for g = 2/5, 1/3, and 1/4.

Values of coefficients

g =2/5 g=1/3 g =1/4
Z4 1.910750624 0.837804224 0.4644013099
Ze 1.088518710 0.276783311 0.0968299150
Zs 0.439166887 0.061847648 0.0129159832
Zio 0.135465650 0.010210054 0.0012208002
O 0.982706435 0.432237451 0.2322006549
Os 0.291860092 0.074496009 0.0242074788
Os 0.061852434 0.008729195 0.0016144979
Qo 0.010067801 0.000757798 0.0000763000

integrable only if the spins in (6) obey the SU(2)q al-
gebra. For the isotropic problem ¢ = —1, the distinction
is irrelevant because SU(2)_; is identical to SU(2). The
distinction is also irrelevant for any ¢ for spin 1/2 or 1,
because the two-dimensional representation of SU(2), is
given by the Pauli matrices as for SU(2), and the spin-1
representation is also the same up to a rescaling of S+ and
S_. Other representations differ, however, so one must be
careful when discussing the anisotropic Kondo problem at
higher spin.

Following [11], we introduce the “quantum mono-
dromy operator” L ;(x), which is defined as

1T »
Li(x) =T exp[uq“‘f dr(eX PO S5
0

- e‘zi"s"(o’T)q*S’S_)], (10)

where the SU(2), generators are in the spin-j represen-
tation and 7 indicates time ordering. The field ¢, is
the left-moving component of ¢; with Neumann bound-
ary conditions we have 2¢,(0,7) = ¢(0,7). The “quan-
tum transfer matrix” 7; = TrL; is a fundamental part
of the Kondo problem: (7T’;(x)) is identical to the spin-j
anisotropic Kondo perturbative expansion, e.g., Zx(x) =
(T\/2(x)). This follows from expanding (10) in powers
of x (the factors g=5: cancel), and using the fact that the
vacuum is an eigenstate of 7;.

As shown in [11], the L; satisfy the Yang-Baxter equa-
tion. This results in a number of remarkable properties.
In particular, one finds that all of the 7; can be generated
from spin 1/2 via the relation [11]

Ti(g" 20Ti(q ™ 2x) = 1+ Ty p(0Tj41p() . (12)
Using induction, it follows that
Ti2(q " 20T () = Tj1a(q'Px) + Timipalg™ 2.

This gives enough information to relate the two partition
functions Z and Zg (and do much more). When one
expands T;(x) for higher j in powers of x, one obtains
integrals with all sorts of charge orderings, with weights
depending on g (because S+ and S— depend on g for
representations other than spin 1/2, and because of the
monodromy of the chiral fields). For example, S3 = 0
for spin 1, so + + — — +— appears at order x° in T},
but + + + — —— does not. Therefore, the unordered
integrals Z,, in (4) can be constructed by summing over
appropriate combinations of terms from the 7;(x). Since
the relations (11) or (12) give all of the higher T;(x) in
terms of T2, this means that any Z,, can in principle be
expressed in terms of the 0,,. The perturbative results
(8) and (9) follow directly from (11).

The quickest way to derive (7) is to introduce cyclic
representations of SU(2),. These occur when g is any
root of unity g’ = =1 and have no analog in ordi-
nary SU(2). They are labeled by an arbitrary complex
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parameter § and have 1 states |m), m = 0,...,1 — 1 with

generators acting as

SF¥m _ —5*m
T 9 |m =,
q —

where states |m) and |m + ¢) are identified. Notice that
in this representation arbitrary powers of the generators
do not vanish [18]. Referring to cyclic representations
as spin 8, one finds that relation (12) holds with j —
6. In the formal limit where 6 = —iA with A > 1
we have S+ = e78%¢¥"/(q — ¢~ '). In this limit the
commutator [ S, S_] becomes negligible, so the traces of
all monomials with n generators S+ and »n generators S
become identical, e.g.,

S+lm) = S:lm) = m|m),

1/2 ,mgA\2n
Tr (S4S_)" = t(%) .
q-4q

Hence one way of expressing Z is

Z(x) = l‘v]<T—iA|:(q - qil)q_l/ze_ngxD

We  substitute j— 6= —iA and x— (¢ —
g g% V2x into (12). Letting A > 1 proves (7)
for g any root of unity (rational g). The result follows for
any |g| = 1 (real g) by continuity. The renormalization
of the Kondo coupling in (7) can be checked through
the identity Z, = Q,. This renormalization ensures that
(7) makes sense in the isotropic limit ¢ — —1, where
the Kondo partition function is a nontrivial object but
Z(x) = 1.

Having obtained the fundamental relation (7), higher-
spin Kondo partition functions follow from fusion, using
the relations (11) or (12). For instance, one has

(TW[(qg — qﬁl)x])Z(qlﬁx)Z(qfl/zx)
= Z(q3/2x)Z(ql/2x) + He. + Z(([3/2X)Z(q73/2x).
(14)

(13)

A>1'

Other such relations give integrals of the form (4) with
any charge ordering. Slightly more complicated ordered
integrals arise in many places, and we hope our results
can be extended. One possibility is in the Keldysh
calculation of the non-zero-frequency noise in the BSG
model [19]. Another is the quantity P(z, T) in the double-
well problem of dissipative quantum mechanics, which
is the probability that a particle at temperature 7 is in
one well at time ¢ given that it is localized in that well
when t+ = 0 [12]. We have found the curious result that
P(iT,T) = T,/2 — 1/2, but its significance is not clear.

We have therefore succeeded in computing explicitly
the Coulomb-gas integrals for the anisotropic Kondo
problem. Our approach suggests a very deep structure,
where the integral equations of the Bethe ansatz can be
solved in terms of Jack symmetric functions and quantum-
group combinatorics. For example, one can see how the

quantum-group structure is responsible for the truncation
of the thermodynamic Bethe ansatz equations at rational
g [16]. We hope that further studies will uncover more
features of these relations.

This work grew out of a conversation with Al B.
Zamolodchikov, for which we are grateful. We thank
F. Lesage for doing the Monte Carlo integrals, and
for helpful discussions. This work was supported by
the Packard Foundation, the National Young Investigator
program (NSF-PHY-9357207) and the DOE (DE-FGO3-
84ER40168).

Note added.— After completing this paper, we learned
that V. Bazhanov, S. Lukyanov, and A.B. Zamolod-
chikov (unpublished) obtained some of these results
independently.
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