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Stochastic Model for Surface Erosion via Ion Sputtering: Dynamical
Evolution from Ripple Morphology to Rough Morphology
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Surfaces eroded by ion sputtering are sometimes observed to develop morphologies which are either
ripple (periodic) or rough (nonperiodic). We introduce a discrete stochastic model that allows us to
interpret these experimental observations within a unified framework. We find that a periodic ripple
morphology characterizes the initial stages of the evolution, whereas the surface displays self-affine
scaling in the later time regime. Further, we argue that the stochastic continuum equation describing
the surface height is a noisy version of the Kuramoto-Sivashinsky equation.

PACS numbers: 68.35.Rh, 64.60.Ht, 79.20.Rf

A remarkable feature of erosion processes via ion sput-
tering in amorphous materials is the formation of a pattern
consisting of a ripple structure, aligned in directions either
parallel to or perpendicular to that of the bombarding beam
of ions [1,2]. Indeed, we might expect that erosion tends
to erase every possible feature of the surface morphology,
and that the presence of noise in the system would fur-
ther act against the formation of such a periodic pattern.
Only recently have there been experimental [3] and theo-
retical [4] attempts to understand the formation of a ripple
structure in the more general context of nonequilibrium in-
terface growth phenomena [3]. Many such interfaces are
"rough" and exhibit self-affine scaling at long distances
and long times [1];experimentally, one finds that surfaces
eroded by ion bombardment also exhibit self-affine scal-
ing behavior [5]. An outstanding question is then how to
reconcile these observations with the formation of the pe-
riodic ripple structure.

In this Letter, we introduce a discrete stochastic model
that incorporates the main physical mechanisms believed
to inhuence the dynamics of the eroded surface morphol-
ogy. We show that this model is characterized by an
initial stage in which the surface morphology displays a
ripple structure, and that subsequent stages are character-
ized by a crossover to a rough surface in the universality
class of the Kardar-Parisi-Zhang (KPZ) equation [6]. We
argue that the stochastic equation which provides the con-
tinuum description of our model is a noisy version [7] of
the Kuramoto-Sivashinsky (KS) equation [8,9]. Thus we
interpret the formation of a periodic pattern [3] and the
development of rough interfaces [5] in the ion-sputtered
systems as the early and late regimes, respectively, of the
same dynamical process.

We first consider the main mechanisms [10] that de-
termine the surface morphology undergoing ion bombard-
ment.

(i) Erosion —In ion sp. uttering, an initially liat sub-
strate is bombarded with a well-collimated beam of heavy
ions carrying a certain kinetic energy, and forming a pre-
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FIG. 1. (a) Sputtering yield I'(ip) as a function of the angle
(b) Box rule for erosion. We define p, as the number

of occupied neighboring sites (grey squares) inside the 3 X 3
box centered at site i (black square), normalized by 7. The
examples shown correspond to (i) p, = 1 and (ii) p, = 3/7.

cise angle with the normal to the uneroded surface. The
phenomena leading to erosion take place within some fi-
nite distance from the surface. Namely, the ions pene-
trate inside the solid and induce along their path cascades
of collisions among the atoms of the substrate. Atoms
located at the surface may be affected by these collisions
and acquire enough energy to leave the surface [11]. Con-
sequently, atoms located at the bottom of troughs gain
more energy on average and they are preferentially eroded
as compared to those on the peaks of crests [12]. This "in-
stability" can be thought of as a negative surface tension,
since the surface tends to maximize its area.

(ii) Surface diffusion. —In physical systems there is a
stabilizing mechanism that balances the negative surface
tension, surface diffusion, which is always present at
a nonzero temperature. Particles on the surface tend
to diffuse looking for highly coordinated positions, a
relevant phenomenon for sputtering [3,5] as well as for
molecular-beam epitaxy (MBE) [13].

When the angle between the local normal to the surface
and the incident beam approaches the grazing value,
there is an increase in the reflection of the ions by the
surface and the rate of erosion diminishes. This surface
effect is beyond the approximations made in Sigmund's
theory of ion sputtering [11],and is rellected in the angle
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dependence of the sputtering yield, Y(p), defined to be the
number of eroded particles divided by the total number
of bombarding ions. Here cp is the local angle of the
ion trajectories to the surface normal at each point [14].
Typically [2], Y(p) is symmetric around p = 0, presents
a maximum between 60' and 80, and decreases to zero
as cp ~ 90 .

To define the model, we introduce two dynamical rules,
one to account for erosion and one to account for surface
diffusion. The rule for erosion incorporates the unstable
behavior described above as well as the phenomenological
dependence of the sputtering yield as a function of cp. The
model for the case of 1 + 1 dimensions [15] is defined on
a square lattice of lateral size L, with periodic boundary
conditions in the horizontal direction. The initial interface
is a horizontal line separating occupied sites (below)
from empty sites (above). We choose randomly a site
i at the interface where i = 1, . . . , L. The chosen site is
subject to erosion with probability p, or to diffusion with
probability 1 —p, where the rules are as follows.

(i) Erosion (probability p).—[16] We compute
tan '[(h;+t —h; ~)/2], where h, is the height of the
interface at site i, and apply the erosion rule with
probability Y(p), as given in Fig. 1(a). To erode, we
count the number of occupied neighbors inside a square
box of size 3 X 3 lattice spacings centered in the chosen
site i (box rule). We empty the site with an erosion
probability p, proportional to the number of occupied
cells in the box [see Fig. 1(b)]. Thus the box rule favors
the erosion of troughs as compared to the peaks of crests,
and therefore is the source of the instability in the ion-
sputtered system.

(ii) Surface diffusion (probability 1 —p).—A diffu-
sive move of the particle i to a nearest neighbor col-
umn is attempted with hopping probability w; f —= [1 +
exp(69K; f/k&T)] ', where A9f; f is the energy dif-
ference between the final and initial states of the move.
Following [17],we choose A —= (J/2) g~; &(h;

—h~) .
A continuum equation that describes the dynamics of

the interface height has the form
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First we study the model in the case Y(p) = 1, which
approximately holds at the early stages of evolution.
We focus on the time dependence of the total inter-
face width W(t) = (L 'g, &[)t;(t) —h(t)] )'t, where

h(t) —= L 'g,
&

)t;(t), and the brackets denote an av-
erage over realizations of the noise. The erosion rule
alone —corresponding to p = 1, Y(p) = 1 —leads to
W(t) —t, which can be attributed to v in (1) being a
negative number [18]. Moreover, by considering only
the erosion rule, but defined with probability 1 —p„
we find that the interface has the scaling properties of
the Edwards-Wilkinson (EW) equation [19] that is ob-
tained from (1) with v ~ 0, ~ = 0, and fr[h] = 0. We
understand this result since one favors the erosion of

B,h(x, t) = vV h —~V h + g(x, t) + fy[h(x, t)]. 10
10 10 10

0.0

(1)
Here h(x, t) is the height of the interface at position x
and time t, v is a negative surface tension coefficient,
~ is a positive coefficient that accounts for the surface
diffusion, and q(x, t) is a Gaussian noise term with
short range correlations and strength 2D that accounts for
the fluctuations in the flux of incoming particles. The
functional fr [h] takes into account the contribution of
nonlinear terms, which appear in the equation of motion
due to the effect of Y(p), itself a nonlinear function of the
local slope Vh =—tan p. The nonlinearities become more
relevant in the equation of motion at the late regime of the
evolution when large slopes develop (see below).

FIG. 2. Time evolution of the surface width for the cases
Y(cp) =—1 and L = 50. The solid line is the consecutive slope
of the width, showing the value of the growth exponent P
in each regime. The inset shows the ripple structure of the
interface at t = 1000. The saturation observed in W(t) is due
to the discreteness of the lattice: the erosion rule breaks down
when the local slopes of the interface are bigger than 3 [20].
This effect can be avoided by using a bigger box. (b) Interface
width as a function of time for the full model showing the
regimes of the evolution for L = 2048. As in (a), the solid
line is the consecutive slope. The inset shows a portion of
the rough morphology at the late regime, where the self-affine
scaling behavior holds. The arrows indicate the times at which
the structure factor is displayed in Fig. 3.
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peaks as compared to valleys, leading to the smooth-
ing mechanism characteristic of a positive surface ten-
sion. On the other hand, the surface diffusion mechanism
alone [for p = 0, Y(p) —= 1] is well described by (1) with
v = 0, ~ ) 0, and f i [h] = 0, i.e., the linear MBE equa-
tion [13,17]. When mechanisms (i) and (ii) above are
considered simultaneously for J/kliT = 5, p = 0.5, and

Y(p) =—1, we obtain the different stages of the time evo-
lution displayed in Fig. 2(a) [21]. There exists a first re-
gion [22] for which W(t) —tP', with Pi = 0.38 ~ 0.02,
the growth exponent for the linear MBE universality class,
after which W(t) scales with Pz ) 0.5 due to the instabil-
ity caused by v ( 0. In this case, a linear stability anal-
ysis of (1) shows that there is a maximally unstable mode
in the system, k =

(~ v~/2')', and therefore the surface
is almost periodic [inset in Fig. 2(a)].

Next we consider the model with Y(p) shown in
Fig. 1(a). The results are not expected to depend strongly
on the specific form of Y(cp), so long as it preserves
the existence of a maximum, and Y(0) 4 0, Y(90') =
0 [23]. Figure 3 shows the structure factor S(k) =
(h(k, t)h( —k, t)) at the onset of the instability. Here

h(k, t) is the Fourier transform of h, (t) —h(t). As we
see, the early stages of the dynamics are still dominated
by the periodic ripple structure defined by the competition
between surface tension and surface diffusion, described
by the linear part of (1).

For later times, the large slopes built up by the
instability induce nonlinear effects, and the interface
results in a rough morphology [inset of Fig. 2(b)]. In
Fig. 2(b), we present the time evolution of W(t) for the
complete model. We again observe a first regime [22]
with Pi = 0.38 ~ 0.03, followed by unstable erosion
(Pz ) 0.5). For later stages, we find P3 = 0.23 4- 0.03,
consistent with EW, after which a crossover to P4 =
0.28 ~ 0.03 is found. Finally, the width saturates due to

the finite size of the system. Note that the value of the
growth exponent for the KPZ equation is PKpz = 1/3
[6]. At saturation, S(k) displays the small momenta
behavior 5(k, t) —k, consistent with the scaling of
both the EW and KPZ universality classes (see Fig. 3).
To determine if a KPZ nonlinearity is present in Eq. (1),
we compute the mean velocity v (I) of the interface
in the saturated regime as a function of an average tilt
m =—(7'h) imposed by using helical boundary conditions.
If we assume that the relevant nonlinearity in (1) is of
the KPZ type, then fi [h] = (A/2) (7'h) . Taking spatial
and noise averages in (1), v = vo + (A/2)m, where
vo is the velocity of the untilted interface [24]. The
parabolic shape of v(m) obtained in our simulations (see
Fig. 4) leads to the conclusion that the long time and
long distance behavior of the model falls into the KPZ
universality class. Moreover, the continuum equation
describing the model ion-sputtered surfaces is the noisy
KS equation

A
i), h = vV' h —IrV' h + —(Vh) + zj(x, t). (2)

To compare the dynamics of (2) with those obtained
for the discrete model, we integrate numerically Eq. (2) in
1 + 1 dimensions. Figure 5 shows the behavior of the
function W(t). We observe the same crossovers as in
the model [22]: Pi = 0.38 ~ 0.03 corresponding to the
linear MBE case, followed by unstable growth Pz ) 0.5.
Then, a transition to EW behavior P3 = 0.25 ~ 0.03 is
observed, after which the nonlinearities dominate and a
KPZ growth with P4 = 0.30 ~ 0.03 is obtained. Finally,
the interface width saturates due to the finite size of
the system. Consistent with these numerical findings,
the late scaling of Eq. (2) has been shown through a
renormalization-group calculation [7] to be that of the
KPZ equation in 1 + 1 and 2 + 1 dimensions. As we
see, both in the model and the noisy KS, there is a long
crossover time from EW to KPZ behavior, responsible for
the difference between P4 and PKpz, and for the narrow
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FIG. 3. Structure factor computed using the full model for
a system with I = 2048. For t = 300, averaged over 2600
noise realizations (o), and for t = 1.7 X 106, averaged over 39
rcalizations ( ~ ) [see arrows in Fig. 2(b)]. The solid line is a fit
by the exact solution of the discretized linear part of Eq. (1).
The dashed straight line has slope —2.
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FIG. 4. Plot of the mean velocity v(m) as a function of the
average tilt I of the interface, calculated in the saturated regime
for L = 128, and averaged over 810 noise realizations. The
solid line is a fit to a parabola.
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window in which P4 is observed —we find that the width
of this window increases systematically with I . A similar
phenomenon is well known to occur in the deterministic
KS equation in 1 + I dimensions (see Sneppen et al. [9].

Finally, we compare the results of the model with ob-
servations of recent experiments [25]. The experimental
development of a ripple structure [3] is well understood
in terms of the unstable linear theory of ion sputtering
describing the early stages of the time evolution of the
model presented here. Moreover, the model predicts that
in the late regime the large slopes generated by the un-
stable growth trigger the action of nonlinearities which
stabilize the surface. The nonlinearity we find is of the
KPZ type, consistent with the experimental observation of
KPZ scaling reported by Eklund et al. [5]. To confirm
the above picture, it would be of interest to study exper-
imentally if both regimes do effectively take place in the
time evolution of the same physical system.
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