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Nature of Dislocations in Silicon
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Interaction between two partial 90 edge dislocations is studied with atomic-scale simulations using
the effective-medium tight-binding method. A large separation between the two dislocations (up to
30 A), comparable to experimental values, is achieved with a solution of the tight-binding Hamiltonian
that scales linearly with the number of atoms. The partial edge dislocation is found to be very accurately
described by the Peierls-Nabarro dislocation model, with generalized stacking-fault restoring forces, as
reflected both in the interaction energy and in the displacement field. An asymmetric core reconstruction
provides fourfold coordination, making Si behave elastically down to atomic distances.

PACS numbers: 61.72.Lk, 71.10.+x

Dislocations are of key importance for mechanical
properties of materials, e.g. , their plasticity. For the
description of dislocations the Peierls-Nabarro (PN)
model [1,2] plays a leading role. This model accounts
for the dual nature of a dislocation by using continuum
elasticity theory to describe two displaced semi-infinite
crystals and including the effect of the discrete crystal
lattice by considering a restoring force for the interface
between the two crystals. The PN model does not only
give analytical expressions for the dislocation energy
outside the core region of the dislocation. It also makes
assumptions about the energy in the core region. This
makes the PN model very useful for practical applica-
tions; recent works include calculations of the critical
thickness of strained layers and the Peierls stress [3]. In
these applications the emphasis is on the need to include
the effects of the dislocation core and to remove the arti-
ficial core cutoff radius present in elasticity theory. This
is accomplished in the PN model. Outstanding questions
concern its atomic-scale basis and the relative extents of
the core and elastic regions of a dislocation. While the
dominance of elastic forces has always been evident for
the long-range behavior, the short-range properties have
been an open question.

Experimental observations [4] imply that dislocations
in Si belonging to the glide sets are dissociated into
partial dislocations bounding stacking faults with sizes

ranging from about 30 to 50 A. The understanding of' the
nature of such extended defects and of their interactions
on an atomic level is hampered by the large number
W of atoms involved. Systems with similar complexity
have been treated with standard first-principles methods
[5]; however, such calculations are computationally too
intensive to be suitable as a general approach, because
these grow cubically, O(N3), with the size of the system.

This Letter reports results of a many-atom calculation
of ground-state configurations and energies for the 90'
partial edge dislocation in Si. The effective-medium

tight-binding (EMTB) model [6] and the O(N) method
by Goedecker and Colombo [7] are used to calculate the
energetics. The result is compared with that of the PN
model using general stacking-fault (GSF) restoring forces.

Recent atomic-scale descriptions of dislocations in Si
have concerned (i) the GSF surface for the two important
glide planes in Si [8], (ii) its application to the PN model
[9], (iii) the interactions of dislocations in Si belonging
to the shuNe set [5] for length scales, where elastic
interactions become valid, and (iv) the core structure for
the 90 edge dislocation, found to be reconstructed [10].

This study is novel by giving a full atomic-scale support
for both the elastic and core parts of the PN model, with
a realistic quantum-mechanical potential. Preliminary
results for the mobiliy of the partial edge dislocation are
given in Ref. [11].

The dislocation structure of Si has been discussed in
many excellent reviews (see, e.g. , Refs. [12] and [13]).
Because the diamond cubic structure is formed by two
face-centered-cubic (fcc) lattices, dislocations are expected
to be similar to the fcc ones. In Si the main slip plane is
the (111)plane and the major slip direction is [110].

The diamond lattice allows for two distinct locations
of the slip plane, placed between atomic planes that are
separated by either (a) a nearest-neighbor (n-n) distance
(planes with the same index), the so-called "shuf lie"
slip plane, or (b) one-third of a n ndistance (-planes of
different indices), the "glide" slip plane. The perfect glide
dislocation is known to dissociate into partial dislocations,
following the reaction 2(101) ~ 6(211) + 6(112). For
the dislocation line along the (110) direction, the latter
glide (6(112)) forms the 90 edge dislocation (Fig. 1).

For the core structure of the edge dislocation sev-
eral models have been proposed: (i) a symmetric
reconstruction [14], where the atoms with the dangling
bonds move closer together and form "quasi-fivefold"
coordinated atoms [Fig. 1(a)], and (ii) an asymmetric one
[15,16], where the symmetry along the dislocation line is
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FIG. 1. Atomic structure projected on the (111) slip plane.
Atoms immediately above (filled circles) and below the slip
plane (open circles) are shown. In (a) the symmetric recon-
struction is shown and in (b) the asymmetric reconstruction.

broken and the atoms in the core have retained their four-
fold coordination [Fig. 1(b)]. This latter reconstruction
has been found to be energetically more favorable than
the symmetric one [10]. The EMTB model exhibits the
same reconstruction, the asymmetric reconstruction being
more stable by 0.18 eV/A, in very good agreement with
the ab initio result by Bigger et al. [10] of 0.23 eV/A. .

To reveal the nature of a dislocation one needs to
know, in addition to its core structure, its effect at varying
distances from the core. For this purpose we study the
interaction of a dislocation antidislocation pair (dipole), a
distance R apart. Figure 2 shows the (111) glide plane
for the two edge dislocations (R is here 27 A.), with
opposite Burgers vectors. In our simulation we use a
unit cell, which in the [112] (x) direction (parallel to
the Burgers vector) has a length of 60 A in the [111]
(y) direction (normal to both the Burgers vector and the
dislocation line) 40 A, and in the [110]direction (along
the dislocation line) a length of a/~2 (a = 5.41 A, a
being the lattice constant) is used. The total number of
atoms in the unit cell is 432. We impose symmetry along
the dislocation line and use a unit cell that only allows for

the reconstruction. Our real-space method uses a larger
unit cell in this direction, avoiding problems with the k

point summation, but using the symmetry to reduce the
computational effort.

The dislocations are introduced by imposing the
isotropic elastic fields [2] from the dislocation array. The
ground-state conhguration is subsequently found using
molecular-dynamics simulations at different temperatures,
using a simulated-annealing technique, with 1000 K
being the highest temperature.

In the simulations we use periodic-boundary conditions
in all directions. Interaction between the dipoles in differ-
ent repeated cells is a consequence of these boundary con-
ditions. Because of the large unit cell this dipole-dipole
interaction can be calculated using continuum elasticity
theory [5]. If the stacking of the dislocation results in
a tilt boundary, a grain boundary can be created along
the boundary of the unit cell. To avoid this, we use the
quadrupolar array, introduced by Bigger et al. [10]. The
quadrupolar array also effectively removes problems with
a tilt boundary, when the distance R between the disloca-
tions in the unit cell is decreased [17].

The EMTB total-energy method is based on the
density-functional theory and is derived ab initio, that
is, without any fitting to experiment. The method is
based on the effective-medium concept of a reference
system [18]. The two main approximations are the use
of a transferable charge density [19] and a first order
linearized muffin-tin orbital (LMTO) [20] basis set. The
parametrized LMTO-TB model gives the band structure
in good agreement with the local-density approximation
(LDA) result [21]. The EMTB model has been found
to describe correctly bulk and surface properties for Si,
including the dimerization of the Si(100) surface [21].

The LMTO-TB Halmiltonian is solved using the O(N)
method by Goedecker and Colombo [7,22]. This method
is particularly suited for systems containing band gap,
such as insulators and semiconductors, because it is based
on an approximation for the Fermi function. In terms of
the tight-binding orbitals, @t, centered on the nth atom,
the O(N) method band-structure energy (Fb, ) expression

FIG. 2. The unit cell for the atomistic simulations in the (111)
slip plane. The dislocation lines (dashed lines) are shown for
each dislocation. The unit cell has been repeated six times in
the direction of the dislocation lines.

(I)
is evaluated efhciently by approximating the Fermi func-
tion f by a polynomial expression in the range of the
eigenvalues e; of the Hamiltonian H. This corresponds
to inserting terms of the form 0" into Eq. (1). The band-
structure energy can then be found by using projection
operators. Exact forces can be found from the derivative
of the approximate total energy, i.e., without relying on
the Hellman-Feynman theorem, and thereby obtain exact
energy conservation in a molecular-dynamics simulation.

For Si the EMTB band gap is 2.1 eV, which makes
the physical properties less affected by a high electronic
temperature in the Fermi function, which we have chosen
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TABLE I. Parameters describing the dislocation in the
Peierls-Nabarro model. The numbers in parentheses are from
the ab initio LDA values in Ref. [9].

Burgers vector b (A)
cii (Mbar)
c~q (Mbar)
c44 (Mbar)
Poison ratio v

Shear modulus p, (eV/A~)
Width of dislocation g (A)
Misfit energy 8'
y „(eV/A')
y, t(e V/A')

EMTB

2.18
1.43
0.90
0.90
0.22
0.45
0.44 (0.58)
0.25 (0.21)
0.16 (0.12)
0.005 (0.006)

Experimental'

2.22
1.66
0.64
0.80
0.256
0.42

0.006

'From Ref. [2],

to be 0.7 eV. With this temperature and a localization
volume [7] for the projection operators with the radius
18 bohr, we obtain an accuracy of S meV/atom compared
to a standard diagonalization. In our implementation we
use a constant number of electrons [17], instead of a
constant chemical potential, as proposed in Ref. [7].

In agreement with Bigger et al. [10] we find that the
symmetric reconstruction introduces states in the band gap
[17],which are not present for the asymmetric reconstruc-
tion. This provides an explanation of the stability of the
fourfold reconstruction. The tendency for fourfold coor-
dination for the atoms in the dislocation core is important
for the elastic behavior of the dislocation.

In the PN model the nonelastic displacements in the
core region are assumed to be confined to the glide plane,
separating two semi-infinite half planes. At each point
in the glide plane the displacement f of the upper half
(y ) 0) with respect to the lower half plane (y ( 0) is
balanced by the restoring force F(f).

Specific information for the crystal restoring forces can
be introduced into the PN model by the use of the GSF
model [23]. Here the energy for displacing the upper half
plane with respect to the lower one is calculated. The
energy for this, the so-called y(f)surface, gives F(f) =
—By(f)/Bf. The y surface for the relevant displacement
f in the [112] direction has been calculated according
to the procedure used in Refs. [8,9]. The results for the
maximum of the y(f) surface, the unstable stacking fault
energy, y „,and for the intrinsic stacking fault energy
(after a displacement of the Burgers vector), y, r, are given
in Table I. The EMTB and the ab initio LDA methods are
seen to give comparable results.

Assuming a sinusoidal relation between the restoring
force F and the displacement f one obtains a measure, s,
of the region where the disregistry is larger than half the
maximum, given by p, b /[(I —v)4m. y~„] [17]. For
the y(f) surface of Si the sinusoidal relation gives values
for g in close agreement with those obtained by Joos, Ren,
and Duesbery [9], in their full solution of the PN model.
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FIG. 3. The dislocation dipole energy from the atomic simu-
lations (circles). The solid line is the result of the PN model,
with parameters given in Table I. The inset shows the linear
scaling with the logarithm of the distance between the dislo-
cations. Here the linear contribution from the stacking fault
energy has been removed.

The PN expression for the interaction energy can now
be expressed in terms of g [2],

Ed;,i, (R) = W + ln + y, tR. (2)
27r 1 —v 2g

The misfit energy in the glide plane, W, is given by
p, b /[47r(1 —v)]. Table I summarizes the parameters
used in Eq. (2), with effective elastic constants p and v
from a Voigt average [2] over the elastic constants for the
EMTB potential. b is the Burgers vector.

The total energy of the unit cell for the relaxed dipole
is a sum of the energy of the isolated dipole [Eq. (2)]
and of the dipole-dipole interaction energy [S]. The
core energy does not enter the latter, because the net
Burgers vector is zero for each dipole. Figure 3 shows
the total energy (circles) for the unit cell, corrected for the
dipole-dipole interaction, as a function of the separation R
between the two dislocations in the dipole. The PN result
(solid line) from Eq. (2), with the EMTB parameters of
Table I, is also shown. The atomic-scale description is
seen to be very close to the the PN result. This close
agreement is shown more directly in the displacement
field around the dislocations. Figure 4(a) shows the
atomic configuration around one partial dislocation in the
unit cell. The displacements of the atoms in the Burgers
vector direction u, (x, y), which is the most important
one for the edge dislocation, relative to their positions in
the perfect diamond lattice are shown in Fig. 4(b). The
results from the atomic-scale simulation (circles) and from
the PN model [2] (solid lines) are shown.

The PN model and the atomic simulation both predict a
very narrow dislocation for Si. The reason is the rigidity
towards displacement, accounted for by a large value of
y „. In metallic systems the situation is different. A
molecular-dynamics study for Cu [24] shows that the core
is extended into the stacking-fault region, even at low
temperature.
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FIG. 4. (a) Atomic configuration around one partial disloca-
tion. For the black atoms in the glide plane (y = 0), grey
atoms (y = 3.1 A), and light-grey atoms (y = 6.2 A.) the dis-
placement field u, (x, y) is shown in (b). The circles are from
the atomic simulation for R = 27 A (each circle represents an
atom). The solid lines are the displacement field from the PN
model. The periodic boundary conditions are used in the x
direction. The curves are displaced arbitrarily relative to each
other.

For Si we find an elastic behavior close to the dislo-
cation, i.e., Si approaches the continuum limit very fast,
which confirms the conclusions by Arias and Joannopoulos
[5] based on energy considerations (Fig. 3). This elastic
behavior is seen directly in the displacement field in Fig. 4,
which follows closely the results predicted by the contin-
uum theory already in the atomic layer adjacent to the dis-
location. The stress field around an edge dislocation in Si
has been studied experimentally [25], showing the same
elastic behavior, however, on a longer length scale.

The extra dipole energy for a quasi-fivefold coordina-
0

tion is 0.4 eV/A, assuming the same elastic interaction
energy. This would result in a misfit energy significantly
higher than the PN result. As discussed by Joos, Ren,
and Duesbery [9), the PN misfit energy W depend only
on elastic properties. The restoring y surface determines
the spreading of the energy in the glide plane. A config-
uration with no dangling bond is thus most likely to be
described correctly in the PN model. Together with the
elasticity of Si, this gives a qualitative explanation of the
agreement between the two methods for Si ~

In summary, the glide edge dislocation studied by
atomic-scale simulations is found to be described accu-
rately by the PN model, using the GSF model for the in-
teratomic interactions. The EMTB potential gives values
for the PN dislocation width se and misfit energy W in
good agreement with those of ab initio calculations [8,9].
The assumptions of the PN model are found justified for
Si because of its very elastic behavior. This nanoscale
elasticity of Si (Fig. 4) is the key physical result of this
study and is a direct result of the fact that the asymmet-
ric reconstruction provides fourfold coordination for the
atoms in the core.
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