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Elasticity of Semiflexible Biopolymer Networks
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We develop a model for cross-linked gels and sterically entangled solutions of semiAexible
as -actin. Such networks play a crucial structural role in the cytoskeleton of

cells. We show that the rheolo ic ro rg p perties of these networks can result from nonclassical rubber
elasticity. This model can exxplain a number of elastic properties of such networks in vitro, including
the concentration dependence of the storage modulus and yield strain.

PACS numbers: 61.25.Hq, 82.70.6g, 83.80.Lz,

A variety of semiflexible biopolyrners and protein fila-
ments affect cell structure and function. The most preva-
lent of these in eucaryotic cells is actin, which forms the
cytoskeletal rim [1,2]. This actin cortex is a polymer gel
that provides mechanical stability to cells, and plays a key
role in cell motion. Networks of actin and other protein
filaments in vitro have been the subject of considerable
recent interest [1—7], not only because of their structural
role in cells, but also because of the unusual viscoelastic
properties of these networks. Such protein filaments as
actin are novel in that they form viscoelastic networks, in
which a «s ( 8„,where a is the size of a monomer, s
is the characteristic "mesh" size of the network, and Z„is
the persistence length of a chain. In the case of actin, s
and Z„areof order 1 p, m, as illustrated in Fig. 1. This,
for instance, has permitted direct visualization of polymer
dynamics such as reptation [8,9] by optical microsco
l7

scopy
[ ]. Insight into the control of viscoelasticity in networks
of both natural and synthetic semiAexible polymers in
this intermediate regime is also important for the design
of biocompatible materials. For instance, aqueous gels
of stiff protein filaments or biocompatible polymers have
both structural and pharmaceutical applications. Ifowever,
neither models of flexible-chain solutions nor models of
rigid-rod networks [8,9] are directly applicable to such sys-
tems. Here we report a model for the elasticity of semi-
Aexible polymer networks that can account for many of the
observed properties of such networks in vi tro.

Concentrated solutions and gels of flexible polymers
are characterized by entanglement points where polymer
strands cross and loop around each other. Permanent
networks or gels can be formed by chemical cross-
links that determine the average distance between points
along a given chain that are effectively constrained by
the surrounding network. For a solution, on the other
hand, the viscoelastic properties depend on transient
entanglements of an individual chain with its neighbors
[8,9]. Despite the transient nature of these entanglements,
over intermediate time scales of interest, the effect is
much the same as that of chemical cross-links, although

the effective degree of entanglement or the average
length L, between entanglements is more subtle. This
intermediate regime is the "rubber plateau, " for which the
solution behaves as an elastic solid. It is this regime that
we address below.

F-actin at concentrations between 36 p, g/ml and
2 mg/ml forms viscoelastic solutions without permanent
cross-links, but the arrangement of filaments is different
from that of flexible polymers. Solutions of actin fila-
ments in vitro exhibit a polydisperse length distribution
of about 2 to 70 p, m in length, with a mean length of
22 p, m [10]. On the scale of the mesh size $ ( Z~,
chains cannot form loops and knots [11—13] since their
persistence length is substantially longer. Therefore, the
structure of a molecular constraint between two actin

FIG. 1 Entangled network of semiAexible actin filaments.
(A) In physiological conditions, individual monomeric actin
proteins (CJ-actin) polymerize to form double-stranded helical
filaments known as F-actin. These filaments exhibit a poly-
disperse length distribution of up to 70 p, m in length. The
persistence length of these filaments is of order 2 p, m. (B) A
dense solution (1.0 mg/ml) of actin filaments, approximately
0.03%%uo of which have been labeled with rhodamine-phalloidin
in order to visualize them by fluorescence microscopy. The av-
erage distance s between chains in this figure is approximatel
0.3 m.p, . Note the nearly straight conformation of the filaments

ey

on this scale.
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filaments will differ from that of two entangled random
coils, and perhaps the term entanglement is not entirely
appropriate in this context. Nevertheless, we shall retain
the term entanglement length and the corresponding sym-
bol L, in analogy with fIexible systems, and to emphasize
that the relevant length for elastically active contacts is
distinct from the average difference between overlapping
polymers, or the mesh size.

Many of the properties that are apparently important for
the function of the actin cortex are essentially different
from those of gels and concentrated solutions of flexible
polymer chains. Although some viscoelastic properties
of actin and other biopolymer networks resemble those
of high molecular weight solutions of flexible polymer
chains, the rubber plateau regime exhibits novel behavior.
Actin solutions, for instance, exhibit relatively high plateau
moduli, of order 100 Pa or higher for actin monomer
concentrations of order 1 mg/ml (i.e., for volume fractions
of order 0.1 k) [6]. Similarly high shear moduli are
also measured for the biopolymer fibrin. For comparison,
high molecular weight polystyrene solutions at higher
concentrations of order 1% exhibit moduli of only about
1 Pa [14]. The plateau modulus of actin networks also
exhibits significant strain hardening for modest strains. A
rather small linear regime is observed; e.g. , in many cases
they have a threshold strain as low as (5—10)%, beyond
which they lose their mechanical integrity. In the case
of actin, this maximal strain also weakly decreases with
increasing actin concentration [15]. As we show, this is
a direct consequence of the intrinsic bending rigidity of
biopolymers such as actin, and is direct evidence of the
inapplicability of the freely jointed chain model for the
concentrations of interest [16,17].

We propose a mechanism for elasticity in these
networks that is still entropic in origin, but which can
account for the rather large moduli. We shall focus
primarily on actin networks, although our model is
applicable to other semiflexible polymers at intermediate
concentrations. We develop a model for densely
crosslinked actin gels and entangled solutions, in which
the elastic properties arise from chains that are very
nearly straight between entanglements, as illustrated in
Fig. 1. As we shall focus on the elastic rubber plateau
modulus, we shall not distinguish between cross-linked
gels and entangled solutions, except insofar as the
entanglement lengths may differ. We show that for
an entangled solution, the plateau modulus scales with

11/5
concentration c~ as G —c~ . As shown in Fig. 2
this is consistent with the measurements to date of
the concentration dependence of G' in the range of
0.3—2.0 mg/ml [4]. For densely cross-linked gels,

I 5/2
however, a somewhat stronger, G —c~, dependence
is predicted.

In our model for the linear elasticity in the plateau
regime, we consider an ensemble of chain segments of
length L, (either between cross-links or entanglement

points), which are embedded in a continuous medium that
undergoes a uniform shear deformation characterized by
angle 0. This assumption of a simple, affine deformation
should be valid only to describe the linear response of the
network. The elastic response of the network results from
the tension in such chain segments as a function of the
extension, L —Lo, where Lo is the relaxed length. When
a semiAexible chain segment is stretched by a tension ~, the
energy per unit length of the chain depends on two effects:
the bending of the chain, and the work of contracting
against the applied tension. The energy per unit length
can be written [19]

0 =
~ ~(V u) + —~r(V u),
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FIG. 2. The plateau modulus G' of actin networks as a
function of concentration in mg/ml [4]. The predicted scaling
for entangled networks, from Eq. (8), is shown. ln this case,

/ 11/5
G —c~ . A nematic phase of actin filaments has been shown
to form above a concentration of approximately 2 mg/ml [18].
Our model is valid for the entangled isotropic regime [11]
(kT/v) /a ( c~ ( kT/(va )

where sc is the chain bending modulus, and u(x) describes
the (transverse) deviation of the chain away from a straight
conformation along the x axis. ~ is related to the persis-
tence length of the chain 4„(the length over which the
chain appears straight in the presence of thermal undula-
tions) by Z„=~/kT. We let L denote the full contour

length of the chain (i.e., for ~ = ~ or r = ~). We neglect
the possibility of "internal" stretching of the chain; i.e.,
the chain is assumed to have no longitudinal compliance.
Thus, for fixed contour length, L —I. = —,

' f dx (Vu)'.
At a given temperature and for a given tension 7. , the trans-
verse thermal fluctuations of u determine the equilibrium
length L. The chain conformation can be described by
the Fourier series u(x) = P~u~ sin(qx), where we include
wave vectors q = rr/L, 2rr/L, . . . consistent with fixed
ends of the chain segment. For the harmonic energy of
Eq. (1), the mean square amplitudes (u ) can be calculated
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from the equipartition theorem, with the result that

1
L —L=kTQ

Kg + (2)

K 6L.
I TL4 (3)

The above results for the behavior of individual chains
can be used to estimate first the maximum shear strain
0

„

that a network can withstand. This will, in general,
decrease with increasing concentration, since the entan-
glement length will then decrease. This means that the
fraction of the excess chain length in the form of ther-
mal undulations decreases, and hence there is less chain
available to "pull out" under the applied stress. More
precisely, the relative extension of a segment of length
L, between entanglements is proportional to the strain 0:
6L —OL, . Considering the total excess length L —Lp
above, the maximum strain for chain segments of length
L, is given by 0 „—kTL, /~ Thus, the .maximum
strain is predicted to depend linearly on L, . Further-
more, this maximal strain decreases with increasing chain
stiffness (for the same entanglement length L,). This is
consistent with the observation that the yield strain does
indeed increase with increasing flexibility of the network:
networks of ADP actin, ATP actin, and vimentin show
such a trend [17].

For the modulus G' we use the relation above for the
tension on an individual chain segment as a function of
the shear strain in the linear regime. For a network, we
consider a chain segment of length L, that is deformed by
an amount given by 6L —OL, . Of course, the deforma-
tion depends on the orientation of the segment. For small
strain 0, the restoring force under both extension and
compression [Eq. (3)] contributes to the linear elasticity of
a network. Solutions and gels are characterized by a mesh
size s that describes the average spacing between chains
or the size of voids between filaments. Along a plane par-
allel to the shear, there are I/s z chains per unit area [9].
The stress o. is therefore given by o. —a. /(kTg Ls)0 in
the linear regime. Thus the modulus scales as

KG' — $ L,
kT

(4)

This is in contrast with the behavior of gels and networks
of flexible chains, for which G' —kT/g3 [8].

where we have included both transverse polarizations of
u. To linear order in applied tension ~, the average
end-to-end distance of the chain segment is L = L
kTL /(6a) + kTL /(90~ )r. The second term repre-
sents the equilibrium contraction of the end-to-end dis-
tance at finite temperature. The last term gives the linear
relationship between the applied tension and extension 6L
of the chain segment beyond its relaxed length. For small
deformations, the restoring force for either extension or
compression is given by [20]

Both the entanglement length L, and the mesh size
g decrease with increasing concentration of chains, al-
though, unlike concentrated solutions of flexible chains,
the scaling of these quantities with concentration need
not be the same when L, ~ s [21]. The characteris-
tic mesh size s for a network of stiff chains is given
by s —I//ac~, where c~ is the concentration of actin
monomers of size a [22]. This is valid when the persis-
tence length of the chains is longer than the mesh size

For a densely cross-linked gel, g is also the typical
distance between cross-links, and therefore entanglement
points; L, = s. In this case,

kTg
(5)~max

K

and

G' —a(~/kT) (acg)" '.

This model provides a consistent framework with
which to understand the macroscopic viscoelasticity of
chemically cross-linked and sterically entangled biopoly-
mer solutions. Based on the semiflexible nature of sev-
eral biopolymers, including F-actin, the model can explain
both the large storage moduli as well as the observed
strain hardening of networks at moderate to low strains
[23], a feature in contrast with the behavior of flexible
polymer networks. For instance, at equal volume frac-
tions, vimentin filaments, which are approximately an or-
der of magnitude less stiff than F-actin, form solutions

and

K2 K2

kT kT
(6)

The precise dependence of the entanglement length
on concentration in a solution of semiflexible chains is
less obvious than for flexible systems. We expect that
L, may become substantially larger than s for

since the transverse fluctuations of a semiflexible
chain are greatly reduced over distances comparable to
or smaller than the persistence length of the chain.
We assume that the scaling of this entanglement length
is the same as that of the typical distance between
binary collisions between chains in solution. This length
can be obtained in the following way [11]. From the
above energy in Eq. (I), the transverse fluctuations at
temperature T of a chain confined (entangled) at one end
grow as (L~) —kTL3/~, where L is the distance from
the entanglement. Thus, the fluctuating chain segments
of length L, between entanglements occupy a volume
L,(L~) —kTL, /~. For a given concentration c~, the
probability of an intersection with another chain is of
order unity for L, —(Ir/kT)' (ac~) ~s, which becomes
larger than s for s « 8„.Thus
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with smaller shear moduli than F-actin, although vimentin
solutions can withstand approximately 10 times larger
strains than F-actin before rupturing. Experimental obser-
vations of shear moduli and yield strain for varying actin
concentration, as well as for modest changes in F-actin
stiffness induced by binding of different nucleotides, are
also in support of this model.

This model makes several additional predictions that
can be tested experimentally. First, as indicated above,
for densely cross-linked gels, G' —~ . Since it is now
possible to measure ~ directly for actin and some other
biopolymers by video microscopy [17], and there are a
number of actin binding proteins and metabolites that can
alter filament stiffness under conditions where filament
length is held constant, the viscoelastic parameters can
be directly measured as a function of ~. Furthermore, the
scaling behavior of entangled solutions and cross-linked
gels as a function of concentration are predicted to differ.
A third prediction is that the viscoelasticity of relatively
dilute filament networks will be extremely sensitive to
filament length even if the average filament length is much
greater than the mesh size, and this dependence will be
greatest for the stiffest polymers. This is because for
semiAexible filaments the entanglement length required
for effects on elasticity can be much greater than the mesh
size [12,13], and this difference depends on tr. Therefore,
subtle changes in filament length can have large effects on
viscoelasticity even when all filaments exhibit significant
overlap. This feature may be one of the reasons the
cytoskeletal actin filaments in cells are under the tight
control of proteins that regulate their length.
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