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Nonlocal Electron Transport in a Plasma
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We have developed a nonlocal linear theory of electron transport in plasmas with arbitrary
electron collisionality. Closure relations for the fluid equations are derived from a solution to
the electron Fokker-Planck equation where electron collisions are considered in the limit of large
ion charge. We have found nonlocal expressions for electron transport coefficients: the electric
conductivity, thermoelectric coefficient, thermal conductivity, electron viscosity, friction, and new
transport coefficients related to the ion How.
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Hydrodynamic equations provide an accurate descrip-
tion for many plasma physics problems. Their form de-
pends upon the transport theory or closure procedure, i.e.,
the method of expressing higher velocity moments of the
distribution function in terms of the hydrodynamical mo-
ments which correspond to density, velocity, and tempera-
ture of a particular plasma species. The Chapman-Enskog
expansion provides such a closure, which is valid for small
gradients of hydrodynamical variables in collision dom-
inated plasmas [1]. Unfortunately, this method starts to
fail when the inhomogeneity scale length is of the order of
hundreds of mean free path lengths. Recent studies have
extended the validity of the hydrodynamical equations be-
yond the Chapman-Enskog approximation into the weakly
collisional regime [2—5] or described the collisionless limit
[6] by using nonlocal transport coefficients.

In this paper we propose a systematic procedure for a
hydrodynamical closure which is valid for arbitrary elec-
tron collisionality and for slowly varying processes. Our
method includes a solution to a linearized kinetic equa-
tion which is based on the two simplifying assumptions
of large ionic charge, Z &) 1, and small amplitude per-
turbations. The method of solution to the kinetic equa-
tion combines two approximations from previous studies:
Electron-electron (e-e) collisions affect only the evolution
of the symmetric part of the electron distribution function
and are neglected as compared to electron-ion (e-i) colli-
sions in the equations for higher order angular harmonics
[2—4,7]; the anisotropic part of the electron distribution
function includes contributions from all higher order angu-
lar harmonics due to the summation method described in
Refs. [8,9]. The new transport relations involve nonlocal
electrical conductivity, thermal conductivity, thermoelec-
tric coefficient, viscosity, and new transport coefficients in
the weakly collisional regime related to the ion flow ve-
locity. In the collisional limit the classical Braginskii's
results [1]have been recovered.

The plasma reference state corresponds to a homoge-
neous Maxwellian distribution function, Fo, with a density
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which are written in the reference frame moving with

no and a temperature To. In order to isolate electron
transport effects we describe the ions as a cold fIuid and
neglect ion-ion collisions and energy exchange due to e-i
collisions. Following previous studies [9,10], we consider
the plasma response to a small amplitude periodic per-
turbation with a wave number k which may involve
a potential ion liow, u; ~ ~

k. The Fourier trans-
formed perturbation (we drop the subscript k for
simplicity) of the electron distribution function
f&(v, p, t) = Pt p ft(v)Pt(p) is expanded in a se-
ries of Legendre polynomials Pi(p), where p, is the
cosine of the angle between v and k. With this expansion
the electron kinetic equation is decomposed into an
infinite hierarchy of equations for the harmonics fi(v, t)
of the electron distribution function as derived before in
Refs. [8—10]. In the equations for the l ~ 0 harmonics
we neglect the time derivatives and e-e collision terms
as compared to the leading e-i collision terms. The time
derivative of the symmetric part of the electron distribu-
tion function, fp(v, t), is retained because the Z times
more frequent e-i collisions affect only the anisotropic part
of the distribution function and therefore are not present
in this equation for fp. The higher order (l ) 1) angular
harmonics can be related to fi and fp using a renormal-
ized e icollision -frequency vi (k, v) = v„Hi(kv/v„)
derived in Refs. [3,8]. The e icollision frequ-ency reads
v„(v) = 4vrZnoe4A/m2v3, where A is the Coulomb
logarithm, and the function 0& is approximated by the
expression Hi(kv/v„) = Ql + (nkv/6v„)z [8]. This
renormalization leads to equations for the first two har-
monics of the electron distribution function [8,9]

cifo i i cIFo

Bt 3 3 Bv
+ —kvfi ——kvu, = C„[fp], (1)
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the ion velocity u;. The e-e collision integral t"„ in

Eq. (1) has been linearized with respect to the electron
Maxwellian distribution function. By solving Eqs. (1) and

(2) we can express the electron distribution functions fp
and f &

in terms of the electric potential @ and ion velocity
u;, which in turn are governed by the Poisson equation
and ion fiuid equations. In particular, the hydrodynamical
moments of the electron distribution functions will also
depend on @ and u;. This is contrary to the usual
concept of the hydrodynamical description, where density,
temperature, @, and u; are independent variables. This
apparent problem does not exist in collision dominated
plasmas [1],where in the zero order approximation Eq. (1)
reads C„[fp] = 0 and gives a linearized local Maxwellian
distribution function as a solution

(M) Bn(t) 6T(t) ( v2 3
fp v, t + Fp v

np Tp &2v~, 2

(3)
Equation (3) introduces Bn and BT as coefficients by
collision invariants. All other moments can be expressed
through these variables using Eq. (2). However, for

weakly collisional and collisionless plasmas the left hand
side of Eq. (1) could be comparable to the e-e collision
term and the higher order moments in fp can no longer be
considered as small.

In order to introduce 6n and 6T into the solution
of Eqs. (1) and (2) we assume that the initial pertur-
bation of the electron distribution function has a form
analogous to Eq. (3). Thus a solution to the evo-
lutionary equations (1) and (2) will depend on four
parameters: cb, u;, Bn(0), and BT(0). The actual hy-
drodynamical moments 6n(t) = 4~ f dv v fp and

6T(t) = (4~/3m, np) f() dv vz(v2 —3vr, )fp can be
also written as linear combinations of Bn(0) and 6T(0).
Using these relations we can eliminate the initial pertur-
bations, Bn(0) and BT(0), from the solution which will
then depend only on the hydrodynamical moments of the
distribution function at the given time.

Our theory starts with the solution of the initial value
problem for Eq. (1). After a Laplace transformation f ~

is
obtained from Eq. (2) and substituted into Eq. (1) giving
the following equation for the symmetric part of electron
distribution function
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where p is the Laplace transformation variable. As
discussed above, the initial perturbation, fp(v, O), has
the form of Eq. (3). The general solution of the linear
inhomogeneous equation (4) can be written as a linear
combination of three velocity-dependent base functions

Tp np Tp)
3 6T(0)+ — P Fp —iku P Fp,
2 TQ

where the P~ (v) satisfy three (g = N, T, R) similar
equations

(5)
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The source terms S~ = 1, Sz = v /3vre —1, and Sp =2

(v /3vz;) (v„/v~) correspond to the perturbations of
density (N), temperature (T), and ion velocity (R). Fol-
lowing the procedure introduced in Ref. [10], Eqs. (6)
have been solved numerically using an expansion of the
functions P~ in Sonine-Laguerre polynomials. This ex-
pansion is effective even for weakly collisional plas-
mas, where it can typically involve 50 polynomials.
Numerical solutions have been matched with the asymp-
totic values of P~ in the collisional and collisionless
limits [7,9]. The full solution to Eq. (6) can be pre-
sented in terms of three moments of the functions P~:
J~ = (4m/np) fo v dv tP~FpS~. It follows from Eq. (6)
that J~ = Jp .

Taking the first two velocity moments of Eq. (5) we find
instantaneous perturbations of density and temperature in
terms of their initial values. Solving this pair of linear al-
gebraic equations for Bn(0) and BT(0) and substituting the
results back into Eq. (5) we obtain the desired expression
for the electron distribution function in terms its hydrody-
namical moments:
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where Dq& = JqJ& —JqJ~. Using Eq. (7) and express-
ing the anisotropic part of the electron distribution function
in Eq. (2) in terms of the hydrodynamical moments we
can construct the closure relations, i.e., we can write ex-
pressions for the electron drift velocity u, = u; —j /en„
where j =- —e f d v vf, is the electric current, and the
electron heat fiux q, = f d3v v(m, vz/2 —5/2Tp) f, .
Following the standard notation of Ref. [1] we write the
electron particle and energy Auxes j and q, in terms of
generalized hydrodynamical forces: the effective electric
field E* = —ikP + (ik/enp) (BnTp + 6Tnp), the tem-
perature gradient ik6T„and the ion velocity u;

j = oE' + nikBT, + Pjenu;,

q, = —nTpE* —haik BT, —p&npTpu;, (8)
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where cr is the electric conductivity, n is the thermoelec-
tric coefficient, g is the temperature conductivity, and Pj ~
are the ion density Aux coefficients. Note that these coef-
ficients are scalar functions of kA„and p, and therefore
our transport relations are nonlocal in time and space:

n = —(enp/m, k vT, ) [—p + (JT + JT)/D/yT],

g = (no/k ) [—5p/2 + (2J + J + J )/D ],
o- = (e np/ m, k vT, )(—p + JT/D~T),

pq = (D~T + D~T )/D~T, pj = 1 —D~T/D~T . (9)

The transport relations (8) possess the Onsager symmetry:
The coefficient o. is the same in both expressions for j and

q, . This follows from the symmetry of the coefficients 1&.
For the detailed discussion of the transport coefficients

we assume a slow plasma motion, k vT, /v„» ~p~,
and for this reason temporal nonlocality is neglected by
putting p = 0 in Eqs. (6) and (9). Transport coefficients
found from the numerical solution to Eqs. (6) using the
Sonine-Laguerre polynomials expansion [10] are shown
in Figs. 1 —3. The coefficients o, u, and g are normal-
ized to their classical values: op = 32e npA„/3vrm, vT„
np = 16enpA„/arm, vT„and ~p = 200npvT, hei/3n
They all have similar long wavelength asymptotic s:
rr = o.p(l —19Zk A„), n = np(1 —107Zk A„), and

~ = ~p(1 —235Zk A„), which were found from the
expansion of Eqs. (6) in the small parameter Zk A„« 1

(cf. [9]). Note that the thermal conductivity in Fig. 1

deviates from the classical limit for much smaller values
of kA„—0.06/~Z than the other transport coefficients.
This is because thermal transport involves higher energy
electrons which are less collisional. All transport coeffi-
cients demonstrate a significant deviation in the weakly
collisional region, kA„—1, from their classical values.
They are all inversely proportional to the wave number in
the short wavelength limit (Zk2A„» 1)

5e np 1 + 1.8$
$87r m, kvT, 1 + 2$

enO 1

f2' m, kvT, 1 + 2s
'

4no~T, 1

$2~k I + 2g'
and exhibit a fractional power dependence in the in-
termediate region, Zk A„—1 (cf. [7,9]). The function
g(k) = 1.9Z i (kA„) i has been introduced in Ref. [9]
from the asymptotic solution to Eqs. (6) in the short wave-
length limit. It accounts for the effect of e-e collisions on
slow electrons.

The electric conductivity o. (Fig. 1) follows its asymp-
totic limit very closely. It is also almost independent of
the ion charge Z. The thermal conductivity ~ is the most
sensitive function of Z and the fractional power asymp-
totics ~ (kA„) i is also visible in Fig. 1. The thermo-
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FIG. 1. The wavelength dependence of the electric conductiv-
ity o and the temperature conductivity g for a plasma with
Z = 8 (small dots) and Z = 64 (big dots). Light lines are an-
alytical approximations.
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FIG. 2. The wavelength dependence of the thermoelectric
coefficient n for plasma with Z = 8 and Z = 64. The short
wavelength region where n(k) changes sign is shown in the
inset.

electric coefficient changes sign in the intermediate region
of kA„—1 —5 (cf. inset in Fig. 2).

The closure relations (9) involve new terms which
are dependent on the ion velocity u; and are related
to higher order angular harmonics of the electron dis-
tribution function. The coefficients P shown in Fig. 3
contribute to the momentum relaxation due to e-i colli-
sions. Their long wavelength asymptotics, kA„(( 1, are

P, = 33k A„and Pq = 133k A„. In the short wave-
length limit p~ ~ In(kA„)/kA„and disappears and pj =
1 —O[ln(kA„)/kA„] approaches unity. Physically this
corresponds to the separation between electron and ion
dynamics in the collisionless limit, where there are no
contributions from ions to the electric current and electron
heat fIux. We will demonstrate below the importance of
coefficients p for the proper description of electron heat
fiux inhibition and electron Landau damping of ion acous-
tic waves.

Transport theory is often applied to the case of zero
current, which describes quasineutral plasma motions.
The generalized Ohm's law in Eq. (8) can be used to
eliminate the ambipolar electric field from the following
expression for the electron heat Aux

tI, = —KikBT —pnpTpll;, K = + cl' Tp/CT,

p = pq
—enp, /~,

where the two contributions to the electron heat Aux
are related to the temperature gradient and ion velocity.
The ion velocity contribution has not been accounted
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FIG. 3. The wavelength dependence of the ion flux transport
coefficients P for a plasma with Z = 8 (small dots) and
Z = 64 (big dots). Light lines are analytical approximations.

for explicitly in previous studies of nonlocal electron
transport. For example, the definition of a nonlocal
electron heat conductivity in Refs. [8,9] has been derived
from ion acoustic perturbations and was defined as the
ratio between the electron heat Aux and the temperature
gradient. The ambiguity in this definition has already
been mentioned in Ref. [10]. From Eq. (11) one can see
that the definition of the heat conductivity used in [8,9]
corresponds to l~ + PnoTou;/ik6T, The s.econd term is
negligible in the collisional limit, but in weakly collisional
and collisionless regions both terms are comparable.

In addition to the quantities discussed above, hydro-
dynamics should also include the electron stress tensor
11t~ = f d v m, (v vtJ—6t~v /3)f, and the friction
force between ions and electrons R;, = f d v m, vv„f,
The electron stress tensor is related to the friction
force IIt~ = (3i/4k ) (ktR~ + kjRt —

s Bt~kR), where
R = R;, —enpE" —2npik6T, . The friction force can
be written as a function of the generalized forces and ion
velocity

R;, = —(1 —pJ)noeE* + p~noikBT,

Prmenoui vTe/~ei r

p„= 1+ k vT, A„

x P.' —J.(1 —
/3, ) —J.'(I —P, —P, )i

27r 3/z vT, dv vFo(v)
(13)

no p Ht(kv/v„)
The k dependence of p, (cf. Fig. 3) is similar to pJ
and has similar asymptotics. In the collisional limit it
disappears as k A«and the friction force R;, = —npeE*
agrees with the classical hydrodynamical theory [1]. In
the collisionless limit P„approaches unity and the friction
force becomes proportional to the ion velocity.

The closure relations (8) and (12) combined with fluid
equations for electrons and ions provide a description of
plasma processes equivalent to the kinetic equations for
arbitrary collisionality. As an example, we have derived

the damping rate of ion acoustic waves for k A„»
Cq /V Te.

ps

kc,
noc, (1 —P)' e'P,'

+ +
2k Tp0 p&Te Aei

(14)
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where c, is the ion acoustic velocity. Note that all
nonlocal transport coefficients contribute to ion acoustic
damping. Expression (14) agrees very well with the
numerical solution to the Fokker-Planck kinetic equation
[8] and the analytical theory of Refs. [9,10]. The damping
coefficient has the proper hydrodynamic form in the
long wavelength limit kA„« 1 and takes the form of
a collisionless Landau damping y/kc, = $7r/8c, /vT, in
the short wavelength region kA„» 1.

In summary, we have developed electron nonlocal
closure relations for fully ionized plasmas which are
valid for arbitrary collisionality. Our theory is linear
and restricted to small amplitude perturbations. The
wavelength dependence of the transport coefficients is
presented here in graphical form, but simple polynomial
fits could also be found. New transport coefficients have
been introduced, describing the effect of ion How on
particle and energy fluxes.
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