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Spectral Statistics: From Disordered to Chaotic Systems
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The relation between disordered and chaotic systems is investigated. It is obtained by identifying
the diffusion operator of the disordered systems with the Perron-Frobenius operator in the general case.
This association enables us to extend results obtained in the diffusive regime to general chaotic systems.
In particular, the two-point level density correlator and the structure factor for general chaotic systems
are calculated and characterized. The behavior of the structure factor around the Heisenberg time is
quantitatively described in terms of short periodic orbits.
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The statistical description of the quantum spectra of
systems, which exhibit chaotic dynamics in their classical
limit, has been conducted mainly along two routes. One
is to study an ensemble of similar systems, such as
disordered metallic grains, where electrons experience
scattering by a random potential. In this approach,
ensemble averaging is a crucial step done at an early stage
of the calculation. The results of such a calculation apply
to an individual member of the ensemble, provided the
time of observation is long enough. The second route is to
characterize the properties of individual systems by means
of the periodic orbit theory [1]. This is possible for a
system with chaotic dynamics governed by a Hamiltonian
that is simple enough, so that the parameters of the
periodic orbits needed for semiclassical spectral analysis
can be calculated explicitly. Averaging in this case is
usually done over an energy interval which consists of
many energy levels [2]. This approach is very powerful
in describing the short time behavior of the system, but
is faced with significant problems when applied to times
of order or bigger than the Heisenberg time rH = h/5
or to energies much smaller than the mean level spacing
5 [3]. Despite the obvious differences between the two
approaches it is believed that to a large extent both
describe the same physics. In this Letter we are applying
results of the first approach in order to extend the periodic
orbit theory to times close to ~H.

The relation between ensembles of metallic grains and
ensembles of random matrices (RM) [4] is now well
understood. The supersymmetric nonlinear o. model [5]
actually provides a microscopic justification for the use
of RM theory in order to describe the universal features
of these systems. This formalism offers a routine way of
calculation of a variety of universal correlation functions
for all Dyson pure symmetry RM ensembles and for
crossovers between them [6]. In view of the growing

1
Rp(s) = — In[27(s)j,

2A 7T Bs
(3)

where n = 2 for the unitary ensemble and u = 1 for T-
invariant ensembles. 23(s) is the spectral determinant of
a classical operator, namely, the diffusion operator

23(s) = A(e~)(s + e ) (4)

Here e~ are eigenvalues (in units of 6) of the diffusion
equation in the grain, and A(e~) is a regularization factor
which equals e for e~ 4 0 and unity otherwise [12].

interest in applying the supersymmetry approach to the
investigation of deviations from universality [7—9], it
becomes important to understand the connection between
the two approaches described above.

The object that we analyze is the dimensionless two-
point level density correlator,

R(s) = a'(p(F)p(F. + sa)) —1.
Here p(F) is the density of states at energy F. , 5 is
the mean level spacing, and (. .) represents ensemble
averaging in the case of disordered systems, or averaging
over some interval of energy E if an individual chaotic
system is considered. The universal form of R(s) is
especially simple in the unitary case. It is the sum of
smooth and oscillating parts [4]: R(s) = 6(s) —[I—
cos(2ns)j/27r2sz. The conventional perturbation theory
for disordered metals [10] can provide only the smooth
part of R(s) [11]. The s )& 1 asymptotics of R(s) in
which the oscillatory term, nonanalytic in 1/s, is retained
was recently evaluated in Ref. [8]. This result (for s 4 0)
can be still presented as a sum,

R(s) = Rp(s) + R, (s), (2)
of a perturbative term Rp(s) and oscillatory one R,„(s).
We rewrite the expression for Rp(s) (see Ref. [11])as
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Surprisingly the oscillatory term R„„(s),which cannot be
obtained by a perturbative calculation, is also governed
by the same classical spectral determinant 23(s). For
example, in the unitary case it has the form

cos(2~ s)
2~2

Since 23(s) is purely classical, it is plausible that for
any chaotic system there exists a classical operator whose
spectral determinant can be identified with 23 (s). In what
follows we shall identify this operator for general chaotic
systems hy a semiclassical analysis of relation (3). For
the sake of simplicity we shall consider a two dimensional
system which belongs to the unitary ensemble.

The semiclassical analysis begins with Gutzwiller's
trace formula [1], which expresses the density of states
p(E) as a sum over the classical periodic orbits

Hence,

~
det(M„" —I)[-' = [A„~

" g(i + 1)A„'",
lc =0

and we can rewrite (7) in the form of a triple sum

1 1 ~R, (s) = —,, %/(i + I) P —,t„'„,
p, k r=l

where

1A —k isT

Using the relation (3) we can determine the spectral
determinant 23 (s) up to a normalization constant:

23 (s) =
( DVZ(is)( .

Upon evaluation of the sum over the repetitions in

Eq. (10), the expression for Z(is) takes the form

I /Z(is) = exp'& + I)4(t„k)], (13)

where p labels a primitive orbit that is characterized
by a period T~, action 5„(E), and Maslov phase v„; r
stands for the number of the repetitions of this orbit. Mp
is the monodromy matrix associated with the linearized
dynamics on the Poincare section perpendicular to the
orbit. From here on, energy and time will be measured
in units of 5 (e = E/5) and 6/5, respectively. One can
substitute (6) into (1) and represent R(s) in the form of a
double sum over the periodic orbits. Rp(s) is given by the
diagonal part of this sum. Expanding S„(e + s) up to the
linear order in s, S„(e + s) = S~(e) + T„s, we obtain

1 e lsTp v

Rp(s) = N T~ „,~det(M„" —I)(
(7)

The traditional way to deal with the above sum is to
approximate it by an integral

f(T, )~
~
det(M„—I))

dt—f(t)

for any sufficiently smooth function f(t) This appro. x-
imation, known as the Hannay and Ozorio de Almeida
(HOA) sum rule [13], holds in the limit t ~ ~ where
long periodic orbits which explore the whole energy shell
uniformly are considered. In employing it for the cal-
culation of Rp(s), the time t should he restricted to the
regime where it is much larger than the shortest peri-
odic orbits but still smaller than the Heisenberg time r~.
The result associated with it is therefore the universal one
Rp(s) = —1/27r s which holds as long as s » 1 [2].
Below we present a more careful treatment of the sum (7)
that keeps the nonuniversal part of Rp(s).

Let A„be the eigenvalue (~A„~ ) 1) of the mon-
odromy matrix Mp. The area preserving property of the
latter implies that the second eigenvalue of M„ is 1/A„.

p k=O

where P(x) = fo t ' ln(1 —t) dt Notic. e that the nor-
malization constant 3V plays no role in the perturbative
part of the two-point correlator. We therefore postpone
its determination.

Suppose now that all the periodic orbits are very unsta-
ble, namely, ~A„~ && 1 for all p's. In this case t~k ~ 0,
p(t„k) ~ t„k and —Z(z) reduces to the dynamical zeta
function [14],

T/7

A Ak
p k 0( 7' p

This function is the spectral determinant associated with-
the Perron-Frohenius (PF) operator X ' (also known as
Ruelle-Araki or the transfer operator) [15]. 5' is the
classical evolution operator which propagates phase space
density for a time t ~ 0. Its kernel is therefore given by

(14)

5 '(y, x) = Sty —u(x; t)],

I/Z(z) = ~, (z —y~)

where y and x are phase space vectors representing
coordinates and momenta, and u(x; t) is the point in
phase space to which a particle that starts its motion
at x arrives after time t. The eigenvalues of the PF
operator are of the form e ~~'. They are associated with
the decaying modes of a disturbance in the density of
classical particles exhibiting chaotic dynamics, analogous
to the diffusion modes of a disordered system. Yet, the
difference is that, unlike in the latter case, here y~ can
appear also in complex conjugate pairs y = y' ~ iy"
where y' ~ 0. The leading eigenvalue of the PF operator,
yo = 0, corresponds to the conservation of the number of
particles. The dynamical zeta function (14) is the spectral
determinant associated with the eigenvalues y~. Up to a
normalization constant it is given by the product
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system under consideration:

C.,(e) = bj(e Ej) I
1—

p /c=0

rsp(e) ivy )
(A [»2A~ )

'

FIG. 1. A schematic drawing of the structure factor of a
chaotic system belonging to the unitary ensemble. The light
line represents the universal RM theory result. For the sake of
clarity, the nonuniversal features have been exaggerated.

where B~ are regularization factors introduced to make
the product converge.

Unlike the periodic orbit theory in quantum mechanics
which gives only the leading asymptotics in the limit
6 ~ 0, the periodic orbit expansion (14) of (16) is exact.
It is however proper to comment that, in its present form,
Z(z) cannot be used to determine the eigenvalues y~.
For this purpose a resummed formula is required. It
can be obtained by expanding the infinite product over
the periodic orbits and ordering the various terms in
a way that leads to maximal cancellation among them.
This so-called cycle expansion [16] exploits the property
that the dynamics of chaotic systems in phase space is
coded by a skeleton of few periodic orbits. In particular,
the long periodic orbits may be approximated by linear
combinations of few short ones.

From (16) and (3) it follows that

R, (s) = 9t
1 1

2rr ls +

in complete analogy with the result of Ref. [11] for
diffusive systems. The universal part of Rp(s), which was
obtained using the HOA sum rule, thus corresponds to the
first term in the sum (17) (yo = 0). The rest of the sum
is apparently system specific.

We turn now to the determination of the normalization
constant M introduced in (12). We shall assume that
the leading eigenvalue yo is of unit multiplicity (this is
the case when the system is ergodic). Comparison of
Eqs. (12) and (4) gives the normalization factor

3V ' = limzZ(z).
z~O

It is customary to express the semiclassical density of
states as the logarithmic derivative of the Selberg zeta
function. The latter is defined as the spectral determinant
associated with the semiclassical energy spectrum of the

(19)
where b~ are regularization factors, and e~ are the
semiclassical energy levels of the system. The second
equality above holds for two-dimensional systems. One
can show that the spectral determinant Z(is) satisfies the
relation

Z(is) = exp((in[/, (e + s)]In[/,*(e)])dj. (20)

where ( . .)d represents an averaging which retains
only the diagonal elements in the double sum. Since
Ap(e) = 1 —(8/rr&e)31ng, (e + i0), the two-point
correlator can be written as

R(s) = — (31n g, (e + s)31n g, (e)) . (21)

The diagonal approximation gives the perturbative term

Rp(s) = — (Dined, (e + s)Sinai, (e))d.
77 Bs

(22)

The difference between Eqs. (21) and (22) can be also
expressed through the diagonal average. Using Eqs. (20)
and (12) it is easy to see that R„„(s)is given by Eq. (5)
with

23(s) = 3V exp(2)t(ln g, (e + s) ln g,*(e))d). (23)

It is convenient to present the result in terms of the
Fourier transform of the two-point level density correlator,
S(r) = f ds e"'R(s), known as the structure or the form
factor. RM theory predicts that for the unitary ensemble
S(r) = min(~r~/2rr, 1) (see the light line in Fig. 1). In
the general case

1
S(r) = Sp(r) + —[S,„(r + 2rr) + S„„(r—2rr)],

2
(24)

where Sp and 5„, are respectively associated with the
perturbative (3) and nonperturbative (5) parts of the two-
point correlator. Assuming that the multiplicity of all the
eigenvalues y~ is 1,

osc 4&2 e
27T @0 27T yp

(26)

S (r)= ge y (25)
p

Again, the universal part of Sp(r) associated with the
HOA sum rule comes from the leading eigenvalue yp =
0. The higher eigenvalues will contribute corrections
which are in general oscillatory and decrease exponen-
tially. For instance, the complex pair y~ ~ iy&' will con-
tribute the term (r(e ~"' cos(yI r)/rr. The oscillatory
part of the structure factor can be written as

4391
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where D~(s) is given by s'i,
LJ~(s) = 1 + ~s 23(s). (27)

7'~ )
For example, in the case of a quasi-one-dimensional
diffusive system, where the eigenvalues are of the
form 7, = Dn one can show that 27„(iDnz) =

4n(—1)"—/ sinh(~n), while for equally spaced eigenval-
ues y„= vn it is D„(ivn) = 2vrn/ sinh(nn). In general
it is expected that the contribution will come only from
the lowest eigenvalues of the PF operator.

In what follows it will be assumed that the nonuniversal
behavior is dominated by one eigenvalue (or possibly a
conjugate pair) yi, i.e., 7' »7I for all p ) 1.

In characterizing S(~), five domains of the parameter 7,
drawn schematically in Fig. 1, are identified: (I) r —r„
where 7., is of order of the period of the shortest peri-
odic orbit. Here S(r) is composed of several 6-function
peaks located at the periods of the short orbits and weighted
according to their instability. (II) ~, ( ~ ( I/yi, devia-
tions from universality associated with (25) may be no-
ticeable also in this interval. Their period of oscillation
I/yI' is of the order of ~, . (III) I/y I ( ~ (2m —I/yI,
the universal perturbative regime where S(T) = 7/2~.
This is the domain where the HOA sum rule holds. (IV)
27' —I/7 I ( r (27' + I/yI, the vicinity of the Heisen-
berg time ~ = 2~. The nonuniversal features here are in
the form of exponentially decreasing oscillations very sim-
ilar to those existing in (II). Yet their amplitude and phase

may be different. In general, the RM singularity at the
Heisenberg time (the light line in Fig. 1) will be smeared
out by them. (V) ~ & 27r + I/yI, here again the univer-
sal result S(r) = 1 holds.

These results can be generalized straightforwardly to
orthogonal and symplectic chaotic systems: instead of
Eq. (5) one should use Eq. (5) of Ref. [8] with P(.s) =
sz 23 (s).

The behavior of the structure factor in the vicinity
of the Heisenberg time is a manifestation of a striking
property of the periodic orbit sum (6), namely, that the
tail of the Gutzwiller's series (the long periodic orbit)
encodes its head (short periodic orbit). As a result, S(7.) in
the vicinity of the Heisenberg time is determined by the
same short periodic orbits as at small ~. The argument
[2] is that the long periodic orbits determine the position
of the energy levels. Therefore through the long range
correlation of these levels they encode the information
about the short periodic orbits. In fact, the Berry-
Keating resummation method [17] of the periodic orbit
sum associated with the quantum spectral determinant of
chaotic systems is based on the bootstrapping of long
periodic orbits with periods near the Heisenberg time
r —2' to the short ones near r, . The behavior of S(r)
near the Heisenberg time reflect ihis sort of symmetry in

the sense that it is determined by the short time dynamics
of the classical system.

To summarize, we identified the diffusion operator in
disordered grains with the Perron-Frobenius operator in
the general case. This relates the spectral determinant
associated with the diffusion equation in the grain to the
dynamical zeta function which can be expressed in terms
of the classical periodic orbits. We used these relations
to extend the theory of the structure factor of disordered
grains to general chaotic systems. It would be interesting
and important to derive these relations for generic chaotic
systems. In this respect the recently proposed o -model-
like approach for ballistic systems [18] looks promising.
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