
VOLUME 75, NUMBER 24 PH YS ICAL RE VIE%' LETTERS 11 DECEMBER 1995

Nuclear Spin-Rotation Interaction in the Hydrogen Molecular Ion

J.F. Babb
Institute for Theoretical Atomic and Molecular Physics, Harvard Smi-thsonian Center for Astrophysics,

60 Garden Street, Cambridge, Massachusetts 02138
(Received 28 August 1995)

The nuclear spin-rotation interaction in the hyperfine structure of the hydrogen molecular ion is
investigated. The interaction constants are determined and are found to differ in sign and magnitude
compared to another theory, but they are in agreement with some values derived from experiment.
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Information on molecular structure [1], nuclear forces
[2,3], fundamental symmetries [4,5], and even interstel-
lar molecules [6] can be gleaned from experimental and
theoretical studies of molecular hyperfine structure. The
precision of measurements of diatomic hyperfine transition
frequencies is continually improving because of develop-
ments such as ion trap —rf spectroscopy [7], ion beam —laser
beam [8,9], and laser —radio frequency double-resonance
[10] methods. Moreover, a recent proposal [11] for the
trapping and cooling of paramagnetic neutral molecules
should offer —once spectroscopy has been carried out-
the ultimate in precision: natural linewidth resolution of
hyperfine frequencies.

For 2 molecules, which have no net electronic spin,
the interaction energy of each nuclear magnetic moment
with fields generated by the motion of the other charged
particles in the molecule is important. It has been studied
in detail both experimentally and theoretically for a num-
ber of such molecules (cf. Ramsey [12] and Townes and
Schawlow [1]). The primary effect is the nuclear spin-
rotation interaction originating with the magnetic fields
generated by the rotating nuclei and orbiting electrons.
The interaction constant can be related to the magnetic
shielding constant [13,14], which describes the effec-
tive magnetic field at a nucleus in an external magnetic
field and is the basis of chemical shifts in NMR spec-
troscopy [13,15]. It is also a sensitive test of electronic
wave function calculations [14,16,17]. Recently, nuclear
spin-rotation interaction has been interpreted as a (Berry-
or geometric-phase-like) manifestation of a non-Abelian
gauge potential in molecular physics [18].

Nuclear spin-rotation interaction is also present in
molecules, which have a net electronic spin, and although
it is of a magnitude comparable with the effect in
molecules, it now causes a much smaller energy in
comparison to energies arising from the interactions of
the electron spin, and thus it is usually not included in
the phenomenological spin Hamiltonians used for fitting
measured hfs transition frequencies. Some exceptions
are H2 [7], Nz [19], and alkaline earth monoIIuorides
[5,20], where effective values for nuclear spin-rotation
interaction constants have been obtained.

In this Letter, the nuclear spin-rotation interaction
for the hydrogen molecular ion H2+ is studied. It is

found that for the ground vibrational state the interaction
1

constant is —41 kHz, less than 2 the value for H2,
—113 kHz [12], but differing from a previous theory in
both magnitude and sign. For higher vibrational states
there is agreement with some empirical data.

Theories giving nuclear spin-rotation interaction con-
stants for diatomics with other than X states exist, but they
are complex. A simplification for Hq is obtained by uti-
lizing the theory for H2. The isotropic magnetic shielding
constant o. , where 1 —o is the proportionality constant
giving the net magnetic field seen at a nucleus in an exter-
nal uniform applied magnetic field, is related to the nuclear
spin-rotation interaction constant. The shielding constant
for nucleus a can be written

o-(R) = crt (R) + tight(R),

where, in atomic units, R is the internuclear distance, and

(R) = — '(011/ .I0) (2)

is the "Lamb" [12,21] or diamagnetic part, where r,
joins the nucleus to the electron and ~0) is the
electronic wave function, and trhf(R) is the high-frequency
or paramagnetic part. The designation high frequency
[22] arises because the expression for trht involves highly
excited electronic states [12],

~ht(R) = n ~ (0(L, (i) . (i)r L, [0)

6,.~o En(R) —E;(R)
+ adj, (3)

where the symbol g;~o represents an infinite summation
and integration over the intermediate electronic states
with wave functions

~ i), "adj" indicates the Hermitian
adjoint of the preceding term, Eo(R) and E;(R) are the
respective electronic energies, and L is the orbital angular
momentum of the electron about the nucleus a, for which
o. is being evaluated.

The separation (1) into a diamagnetic and a paramag-
netic part is not unique [13,14]. It is related to the choice
of origin for the electron orbital angular momentum and
other vectors, which in turn is related to the choice of a
gauge constant associated with the magnetic vector poten-
tial in the Coulomb gauge (cf. [13,15,23]). Expressions
(2) and (3) above adopt the convention of the vectors ori-
gin at the nucleus.
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Let I and N be, respectively, the total nuclear spin and
rotational angular momenta and define the nuclear spin-
rotation interaction constant f, a frequency, through the
energy hf I N in the hfs Hamiltonian [24,25], where h is
Planck' s constant. Introducing

f(R) = ft(R) + f2(R), (4)

the major contributions [12,26] to the energy are from
the interaction of each nuclear magnetic moment with the
magnetic field generated by the other rotating nucleus,

bf, (R) =— (5)

TABLE I. Electronic expectation values of the shielding
constants o.f (R) and o.(R), dimensionless, and values of f(R),
in kHz.

and with the magnetic field generated by the orbiting
electron [13],

2
12g& p~bf, (R) = —,, ~„(R),n2R2

where R is the internuclear distance, and the dimensionless
quantities o. , g~ = 5.586, and crbf are, respectively, the
fs constant, the proton g factor, and the high-frequency
component of the magnetic shielding constant as defined
in Eq. (3). Atomic units are used throughout, except for
f, which is expressed in kHz.

Direct computation of o br(R) is rather involved and re-
quires evaluation of a term in second-order perturbation
theory. It is much easier to use (1) because values of o.
are available and values of a.I. are easily calculable. More-
over, because o is gauge independent the irreducible com-
ponents of the (symmetric, second rank) shielding tensor
calculated with a different gauge origin by Hegstrom [27]
could be utilized here to calculate o. [28]. Values of oI (R)
were calculated [29] at various internuclear distances R
and are given in Table I. Then, oI,f was determined us-
ing (1) and (2) and values of f were determined using (4).
Values of o. and f are given in Table I.

Jefferts [7] measured hfs transition frequencies of the
vibrational v = 4—8 states of the g„+ ground electronic
state of H2 . For the rotational quantum number N =
1 for each v, he fit the transition frequencies by the

Hamiltonian

Hhf, =bI S+cIS, +dS N+ fI N, (7)

and obtained values for the coupling constants b, c, d,
and f, where I and N have been defined and S is the
electronic spin angular momentum vector, and his results
for f are given in Table II, column 2. The measured
hfs transition frequencies were refit by the Hamiltonian
(7) independently by Kalaghan [30], Menasian [31], and
Varshalovich and Sannikov [32], who all obtained mutu-
ally consistent results for f that had the opposite sign and
somewhat different magnitude than those of Jefferts. The
values of [30] are given in Table II, column 3.

McEachran, Veenstra, and Cohen [33] obtained a theo-
retical expression for a nuclear spin-rotation interaction
constant by simply multiplying the first-order electronic
spin-rotation constant d& [34] by the ratio of the electron
mass and the nuclear reduced mass. Their formula gives a
positive interaction constant. Interestingly, it is indepen-
dent of the proton g factor g~, and thus does not contain
the proton magnetic moment. Nevertheless, close agree-
ment was obtained with the empirical values of f obtained
by Jefferts. The values for v = 4—8 of McEachran, Veen-
stra, and Cohen and the v = 0 value calculated using their
formula are given in column 5 of Table II ~

Fu, Hessels, and Lundeen [35] extracted hfs constants
for H2 from an analysis of their measured transition
energies for highly excited Rydberg states of the hydrogen
molecule. Their value for f for the v = 0, N = 1 state is
given in column 4 of Table II. It is consistent with zero.

In order to compare the present results with the above,
the values of f in kHz —a partial listing is given in
Table I—were averaged over the vibrational-rotational
wave functions for various v with N = 1 calculated with
the Born-Oppenheimer potential using standard methods.
The results are given in the last column of Table II.

TABLE II. Comparison of experimental and theoretical val-
ues of the nuclear spin-rotation coupling constant for H2 for
various vibrational states v with rotational quantum number
W = 1, in kHz. The column labeled "Refit" gives results ob-
tained by refitting the raw experimental transition frequencies
from [7]. Numbers in parentheses are quoted experimental
uncertainties.

R/ap

1.0
1.25
1.50
1.75
2.0
2.25
2.50
2.75
3.0
4.0
5.0

o.I (R) X 106

21.5183
19.3436
17.6258
16.2484
15.1295
14.2116
13.4530
12.8232
12.2991
10.9538
10.3478

~(R) X 10'

17.6401
15.3584
13.6704
12.3995
11.4296
10.6825
10.1046
9.6575
9.3133
8.6124
8.4913

f (R)
—453.7
—213.8
—114.5
—67.21
—42.31
—28.16
—19.63
—14.22
—10.65
—4.285
—2.215

Expt. [7]

38(1.5)
36(1.5)
34(1.5)
32(1.5)
30(1.5)

'Values are from
in Refs. [31] and
Values for v =

and —38.0.

Empirical

Refit' Expt. [35]
—3(15)

Theory

[33] Present b

—41.7
—34(1.5)
—33(1.5)
—31(1.5)
—29(1.5)
—27(1.5)

38.8
36.2
33.6
31.1
28.6

—36.2
—34.6
—32.9
—31.0
—29.1

Ref. [30] and are identical with those given
[32], except [31] gives —32(1.5) for v = 5.
1, 2, and 3 are, respectively, —40.8, —39.4,
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Good agreement, including the sign, is obtained with the
empirical results of [30—32].

The expression (4) can be obtained using more formal
arguments. The first term in (4), f&, follows by consid-
eration of the interaction of a nuclear moment with the
magnetic field generated by the rotation of the other nu-
cleus [36]. The second term in (4), fz, would be expected
to occur in second-order perturbation theory through the
electron orbital-rotation interaction

2

MpR2
L. N, (8)

where L is the electronic angular momentum about the
center of nuclear mass and Mp is the proton mass, and the
electron orbital-nuclear spin interaction

H) —H), + Hib (9)

H4 =—

where

H]a = 2gp p'pp+Iz I a
/

—3

and

(O[H,.[t) (t [HI. [0)
~,(R) —z, (z)

and similarly for Tb. It follows that

gp P,~
2

R~

g &oILali) . &ilr. 'Lalo)
z, (z) —z, (z)

(14)
and similarly for Tb. Since I = I„+ Ib and T =
hfzI N, the desired result Eq. (6) is obtained by sub-
stituting Eq. (3) for o.hr into T„Eq. (14), and into Tb,
although a more careful derivation is desirable.

Elaborate treatments of the Hamiltonians for diatomic
molecules in other than X states including all angular
momenta have yielded nuclear spin-rotation interactions
for various electronic states [37—41]. In particular, terms
similar to f~ and fz were given by Mizushima [38] for
a X state, although they were not related to Ramsey's
theory.

The present approach may be generalizable to other
X molecules. Hegstrom [27] has shown for Hz that

H&b = 2gpp, apwIb rb L (11)
where I, and Ib are the nuclear spin angular momenta,
and where the terms H4 and H& were derived by Dalgarno,
Patterson, and Somerville [34] from a nonrelativistic
reduction of the Dirac equation for H2 . Writing

1
H4 = — (L, + Lb) . N —= H4, + H4t, , (12)

MpR2

where L, is the electronic angular momentum about
nucleus a, and similarly for Lb, the corresponding energy
in perturbation theory is, schematically, T —= T + Tb,
where

there is a relation between the second-order electron spin-
rotation interaction constant d2 and a second-order part of
the shielding constant tr. Equation (6) would thus imply
that there is a relation connecting dz and fz. Physically,
such a relation might be anticipated because the nuclear
spin and electron spin are both separately coupled to rota-
tion through the excitation of electronic angular momenta.
Such a relation would make it possible to estimate f, if
d were measured, using theoretical values of ft and d~.
Moreover, through the above arguments, the recent find-
ings that electron spin rotation in a paramagnetic molecule
and nuclear spin rotation in a diamagnetic molecule are
each, separately, describable using a non-Abelian gauge
potential method in molecular physics [18,42] can proba-
bly be related.

The present paper demonstrates that there is a solid
theoretical basis for nuclear spin rotation in a X mole-
cule. A synthesis of the theories for 'X, molecules and

X molecules has yielded a simple expression for the in-
teraction constant in H2+. Using calculated properties of
H2 numerical values obtained for the interaction con-
stant were found to be in good agreement with empirical
results. The sign of the effect is found to be the same as
for H2, making H2 another rare example of a diatomic
with negative nuclear spin-rotation interaction.
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Theoretical Atomic and Molecular Physics at the Smithso-
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