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Reconciling Sterile Neutrinos with Big Bang Nucleosynthesis
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We reexamine the big bang nucleosynthesis (BBN) bounds on the mixing of neutrinos with sterile
species. These bounds depend on the assumption that the relic neutrino asymmetry L is very small.
We show that for L, large enough (greater than about 10 ') the standard BBN bounds do not apply.
We apply this result to the sterile neutrino solution to the atmospheric neutrino anomaly and show
that for L, ) 7 X 10 it is consistent with BBN. The BBN bounds on sterile neutrinos mixing with
electron neutrinos can also be weakened considerably.
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The solar neutrino deficit [1], atmospheric neutrino
anomaly [2], and LSND experiment [3] can all be
viewed as evidence for nonzero neutrino masses and
oscillations. It does not seem possible to explain all
these anomalies with the three known neutrino species
and thus new neutrino species might exist. Given that
new ordinary weakly interacting neutrino species are ruled
out by LEP, sterile neutrinos (v, ) are a natural candidate.
There are essentially two types of sterile neutrinos that
can be envisaged. First, there are sterile states which
either have no gauge interactions, or interactions which
are much weaker than the usual weak interactions [4].
Second, it is possible to envisage neutrinos which do
not have significant interactions with ordinary matter but
do have significant interactions with themselves. An
interesting example of the latter is given by mirror
neutrinos which interact with themselves only through
mirror weak interactions which have the same strength as
ordinary weak interactions [5].

However, for both sterile and mirror neutrinos there are
apparently quite stringent bounds if they are required to be
consistent with standard big bang cosmology. Assuming
that the number of effective neutrino species present
during nucleosynthesis is bounded to be less than 4, then
the mixing angle (0p) and the squared mass difference
(6'm ) for a sterile neutrino mixing with one of the known
neutrinos is bounded by (assuming Bm ) 0) [6]

6m sjn 20p ~ 5 X 10 eV

6m sin 20p(3 X 10 eV, v= v~, . (1)
These bounds arise by demanding that oscillations do
not bring the sterile neutrino into equilibrium with the
known neutrinos. Electron neutrinos must also not be de-
pleted too much by oscillations after decoupling, during
the big bang nucleosynthesis (BBN) epoch, because then
the freeze-out temperature for neutron-proton transitions
is increased. For maximal mixing, the bound on 6m is
extended to Bmz ~ 10 " eVz [6]. These "bounds" would
appear to exclude the region of parameter space required
to explain the atmospheric neutrino anomaly in terms
of v~ —v, oscillation (Bm = 10 eV, sin 20p ——1),
and would restrict the parameter space required to explain

the solar neutrino deficit in terms of v, —v, oscilla-
tion. An important assumption in deriving the bounds of
Eq. (1) is that the relic neutrino asymmetries could be ne-
glected. However, the neutrino asymmetries cannot be
measured, and at present the origin of particle asymme-
tries is not fully understood. Only the extremely weak
bound I., ( 10 can be derived by demanding that the
neutrinos do not violate the upper limit on the total en-

ergy density of the Universe. The purpose of this Letter
is to reexamine the BBN bounds on ordinary-sterile neu-
trino mass and mixing for arbitrary neutrino asymmetries.
In particular, we will show that for neutrino asymmetries
larger than about 7 X 10 5 the standard big bang model
is consistent with sterile neutrinos mixing with muon neu-
trinos with parameters suggested by the atmospheric neu-
trino anomaly [7].

Let us first examine the ordinary neutrino (v
e, p„r)oscillating with a sterile neutrino (v, ) in vacuum.
Oscillations can occur if the weak eigenstate neutrino
and sterile neutrino are each linear combinations v
cos Op v~ + sin Op v2 and v, = —sin Op v~ + cos Op vq of
mass eigenstates v& 2. An ordinary neutrino of momentum

p will then oscillate in vacuum after a time t with
probability

((v (t)(v, )[ = sin 20psin (t/L„„), (2)

where [8]

L„,= 2p/Bm —= 1/5p. (3)

However, in the early Universe oscillations occur in
a plasma. For v —v, (n = e, p, , r) oscillations in
a plasma of temperature T, the matter and vacuum
oscillation parameters are related by [9]

sin 20 = sin 20p/(1 —2zcos20p + z ),
= Ap(1 —2z cos 20p + z ), (4)

where z = 2(p)(V —V, )/Bm and (V,) are the ef-
fective potentials due to the interactions of the neutrinos
with matter ((p) = 3.15T). For a truly sterile neutrino
V, = 0. (For neutrinos which have only self-interactions,
e.g. , mirror neutrinos [5], V, can be nonzero. We will
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V = v2GpN~(L( ~ —A T /M~), (5)

comment on this case later. ) For a weak eigenstate neu-
trino (v, n = e, p, , r), V is given by [10—12]

be neglected] and maximal mixing

t'y MpG T
(6 ) ~79G TN [L ]~ — 1

11

(9)
where Mp = 1.2 X 10 MeV is the Planck mass. Note
that in the case where the mixing is not maximal, the
bound is even more stringent. Clearly, oscillations from
ordinary to sterile neutrinos which occur after the kinetic
decoupling temperature (Td«) do not significantly affect
the energy density of the Universe. For temperatures
above Td„, the most stringent bound occurs at the
decoupling temperature. For v„Td„=2.6 MeV and forv„„Td„——4.4 MeV, which leads to the bounds

1am'I & 4 X Io'IL~')
I
ev',

(Bm [(1.6X10(L"'(eV, v= v~, . (10)
These bounds replace those of Eq. (1) in the case where
(L ( is large ()L ( ) 10 ).

In the case of electron neutrino oscillations into sterile
neutrinos a more stringent bound comes by requiring that
the electron neutrinos are not depleted significantly down
to temperatures where the protons and neutrons go out
of equilibrium (which is about 0.8 MeV in the standard
scenario). For maximal mixing, the bound is Bm2 (
10 eV if L(') is negligible [6]. However, in the case
where ~L('~~ is not negligible ()10 ), the situation is
changed. If we demand that sin 20 ~ 1/10 for T ~
0.8 MeV (which means that the v, —v, oscillations are
severely suppressed for T ~ 0.8 MeV) we find in the case
of maximal mixing that

]6m [ 2&2~L~')~GpN~T ~ 3.3[L '
( eV . (11)

This bound for v, —v, oscillations is clearly more
stringent than Eq. (10).

In the above analysis we have assumed that the value
of L~ is fixed. However, in reality L~ is in general not
constant. Oscillations can change its value. There are
only two regions where oscillations are important. First,
there is the region near the high temperature resonance
(in this region sin2 20 = 1). The second region where
oscillations can significantly change L~ ~ is at the low
temperature region T = Td„. Oscillations can change
L~ in this region because the production rate of sterile
neutrinos is not so strongly suppressed (recall sin2 20
sin 20p as T ~ 0). We now consider each of these
regions in turn.

%'e will assume for definiteness that L~ ~ is positive
(unless explicitly stated otherwise). The production rate
of sterile neutrinos is given by Eqs. (7) and (8) with
sin 20 given by Eqs. (4) and (5). The condition for
v —v, oscillation resonance (0 = rr/4) is that

V V = Apcos20p,

where GF is the Fermi coupling constant, M~ is the 8'
boson mass, and A is a numerical factor given by A, =-

55 and A~, = 15.3 [10,11]. The neutrino asymmetry
L~ ~ is given by

L~-~=L. +L, +L. +L, ,

where L = (N —N )/N~. S—ince we will be interested
in the case where the asymmetries are large (of order
10 or more) we have neglected the asymmetries in the
electrons and protons or neutrons since these are known
to be small (-10 'P).

For L( ) non-negligible, the bounds of Eq. (1) can be
weakened considerably. This is because the oscillation
probability depends on L~ ~ through the dependence of
sin 20 on L( ) in Eqs. (4) and (5). The condition
that the sterile neutrinos not come into eqilibrium is that
the interaction rate for sterile neutrinos is less than the
expansion rate, i.e., I, ~ H We will. assume that there
are essentially no sterile neutrinos initially. The rate of
production of sterile neutrinos is given by the interaction
rate of ordinary neutrinos multiplied by the probability
that the neutrino collapses to the sterile eigenfunction, i.e.,

r, (t) =(p, —.,),.„r,, (7)

where I, = y GpT (y, = 4.0 and y~, = 2.9) [6]
and (P, ~ v, )„~~is given by

(P, ~ v, )„~~= sin 20 (sin (x/L~„))),

implying that the resonance temperature is [12]

T„,= L~ )Mw/A —6p cos 26pMtv/A J2 GpN~ .

(13)
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where x is the distance between collisions. Note that
(x) —= L;„,= 1/I, where L;„,is the mean distance be-
tween interactions. From Eq. (4) it is easy to see that the
production rate of sterile neutrinos is significantly sup-
pressed (because sin 20 (( sin 20p) for temperatures
above about 12 MeV (given 6m2 —10 2 eV ), indepen-
dently of the magnitude of L( l (except in a resonance
region where sin 20 = 1, as we shall discuss later).
Below about 12 MeV, sin 20 approaches its vacuum
value (unless L( l is non-negligible). In the standard sce-
nario [6], it is in this region where oscillations can occur
and potentially bring the sterile neutrino into eqilibrium.

However, for L~ ~ non-negligible, the production rate
of sterile neutrinos can continue to be suppressed in the
region below 12 MeV. Assuming ~L( )~ & 10 (which

we will discuss later), the condition L;„,/Los~ && 1 always
(m)

holds off resonance (for temperatures above the decou-

pling temperature). This means that (sin (L;„t/Lose)) av-(m)

erages to 1/2. Using this result, and Eqs. (7) and (8) [with
sin 20 given by Eq. (4)], we can now calculate the pro-
duction rate of sterile neutrinos for the general case with
L~ ~ nonzero. Demanding that this interaction rate be less
than the expansion rate, i.e., I „~H = 5 5T /Mp, we.
find for large L~ ~ [where the second term in Eq. (5) can
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Observe that strictly, the right-hand side of Eq. (13) is a
function of temperature so that we must solve Eq. (13)
for the resonance temperature. However, it turns out we
will be interested only in the high temperature resonance
and quite large values of L( ), i.e., L{ ) ~ 10 5, and
in this case the second term on the right-hand side of
Eq. (13) can be neglected (for Bm ~ 1 eV2).

Observe that for L( ) ) 0, 6m ) 0, there is no reso-
nance for antineutrinos while for L( ) ) 0, 6m ( 0 the
resonance for antineutrinos occurs at very low tempera-
tures. (Note that for Bm2 ~ 10 eV2, L ~ ~ 10 5 this
low temperature resonance occurs at temperatures below
the kinetic decoupling temperature and thus it can be ne-
glected in our analysis. ) Of more importance is the "high
temperature" resonance which, for L( ) ) 0 occurs only
for neutrinos (for Lf l & 0 the high temperature resonance
occurs only for antineutrinos). The effect of the high tem-
perature resonance is rather interesting. For an initial L{ )

less than a certain "critical" value (to be determined later)
L( ) will evolve to zero. This is essentially because the
oscillations near the resonance are so numerous as to con-
tinually lower the value of ~L ~

and hence also the reso-
nance temperature, so that the system cannot actually pass
through the resonance.

However, for L{ ) large enough there will be a critical
point where the expansion of the Universe is more impor-
tant than the change in L{ ) due to oscillations. This behav-
ior has been studied numerically in Refs. [11,13]. Below
we show how this behavior can be understood and we de-
rive an analytic approximation for the critical value of L( }.

If the change in the resonance temperature due to
oscillations is greater than the width of the resonance,
then the resonance will be moved to lower and lower
temperatures, until the lepton number is reduced to near
zero. However, if the change in the resonance temperature
due to oscillations during the resonance is less than the
width of the resonance [14], then this will ensure the
system passes briefly through the resonance. Having
passed through the resonance, the value of L( ) will not
change significantly until much lower temperatures, as
discussed earlier. The condition that the system passes
through the resonance is that

6T„,~ AT, (14)
where 6T„,is the change in the resonance temperature
due to the oscillations as the system passes through the
resonance, while h, T is the width of the resonance. The
resonance temperature T„,is related to the lepton number
asymmetry through Eq. (13) so that

aT,„=M~aLf ~/2 W. L~ l. (15)
Now, 6Lf ~ is proportional to the reaction rate I

„

for ordi-
nary neutrinos converting into sterile neutrinos multiplied
by the time it takes for the system to pass through the reso-
nance At, i.e. , BL l = —3I „h,t/4 Note that the .reso-
nance width measures defined in terms of the temperature
and the time, b, T and Ar, are related to each other
using the time-temperature relation of the early Universe:
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= Mp/1 1T implies 5 t = M—p 5T/5. 5T . Hence, the
condition that the system will pass through the resonance
is that

sM~M, r„/4&r'/~. r I-~ i. (ig
Note that for L ) 10, T„,) 35 MeV. It is easy

{m)to verify that at the resonance, L;„r/Le,e « 1 and hence

sin (L;„r/Lose)) = L; t/Lose . Using this result, and
(m) 2 (m}2

Eqs. (7) and (8), we can calculate I', at the resonance

I v, lres
= ~o/ynGFT

Substituting I, ~„,into Eq. (16), we obtain

(am')4M,'~'
k3 x 10syzGFM

(17)

Note that L„;,is independent of the vacuum mixing
(n)

angle 00. For L ~ L„;,the change in the resonance
temperature is greater than the width of the resonance.
This means that the resonance dynamically evolves to later
and later times, with L{ ) moving closer and closer to zero.
For L )L„,, the change in the resonance temperature(~) (n)

is less than the width of the resonance, so the system
passes through the resonance. Having passed through
the resonance the value of L{ ) remains approximately
unchanged (until much later times as will be discussed

later). Thus requiring L~ ~ ) L„;,we find

L{') ) 9 X 10 for 6m «10 eV,
L{~') ) l8 X 10 for6m «10 eV. (19)

It is useful to compare our analytic expression Eq. (18)
with the numerical work of Ref. [13]. They find numeri-
cally that for 6m = 10 " eV an initial asymmetry of
L ' = 10 remains unchanged on passing through the
resonance. They also obtain that for 6m = 10 eV
an initial asymmetry Lo = 10 leads L{') to evolve

(e)

to zero. These results are consistent with our analytic
expression Eq. (18). [Putting in Bm = 10 " eV in

Eq. (18), we find L„;,= 9 X 10 & Lo, while for
Bm = 10 3eV2wefindL„;, =2.1 X 10 ) Lo .]

As a consistency test, we should check that the change
in L{ ) on passing through the resonance is small com-
pared with the initial value of L( ). To work out the
change in L{ ) on passing through the resonance, we must
work out the width of the resonance. Note that the width
of the resonance is larger than might be expected. Ac-
tually, the interaction rate at the center of the resonance
0 = ~/4 is equal to the interaction rate anywhere in the

region where Lose = 5 » L;„t. To see this observe
(m)

that the interaction rate is given by

. 2 Lnr&I „=I „sin20 sin
OSC

2

y GFT5)
Thus, I, = I „~„,[defined in Eq. (17) provided
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(& L;„,= y~GFT . Using Eqs. [(13)—(15)j, it is
easy to show that the change in L on passing through
the resonance is related to the resonance width by
BL( )/Lt ) = 2AT/T Ca.lculating AT using 5 (T„,+
AT/2) = y GFT„„wefind that 6L )/L( ~ 0.04
(0.10) for v = v, (v = v~, ). Thus, the change in
L~ } through the resonance is always at least an order of
magnitude smaller than L~ }.

Note that the calculation of L„;,assumes that the sterile
(n}

neutrino has no significant interactions. In the case of a
neutrino which has only significant interactions with itself
(such as a mirror neutrino [5j) then V, is unequal to zero.
In this case L does not evolve to zero but evolves so
that V —V, = 0. This does not affect the resulting
analysis, since the interaction rate depends on V —V,
rather than V .

We now consider the low temperature region T = Td„
in which oscillations can also potentially erase L~ }. To
calculate 6L~ } in this region, we must integrate 6L~ }=
—3(I, —I , )6t/4, —using I = (1/2)I, sinz Op/(I—
2z cos 20p + z ) where z differs between v and v by
L ~ —L~ . Approximating 1 —2z cos 200 + z
by z, which is approximately valid for L ~ 10
and 6m ~ 10 2eV (10 s eV) for n = p„,r and
T ~ 4.4 MeV (n = e and T ~ 0.8 MeV), we find that

4 ( ) 4 3sin OpA y Mp(Bm )
final initial

22M TW f

where the last inequality comes by demanding that

LI;„,t ~ 10 so that the bounds of Eqs. (10) and (11)
remain valid. Note that the strongest tendency
towards erasure of L~ } occurs at the low tem-
perature end of the integration region. For

p 7 Tf Td = 4 4 MeV. For u = e, we
require T~ = 0.8 MeV because we require that L ' not
be erased above the temperature in which the protons and
neutrons are kept in equilibrium. Evaluating Eq. (21) we
find that in the most stringent case of maximal mixing

L,„;„,~
) 4 X 10 for Bm ~ 10 eV,

L;„";;;,i ) 7 X 10 for Bm ~ 10 eV. (22)

These bounds are slightly more stringent (for maximal
mixing) than those obtained earlier from requiring that
E~ } not be erased due to the high temperature resonance.

Thus, we conclude that if L satisfies Eqs. (19) and
(22) then L( l is not erased either at high temperatures
or at low temperatures, and hence for L~ } satisfying
Eqs. (19) and (22) the bounds of Eqs. (10) and (11)hold.
We conclude that for L( l satisfying Eqs. (19) and (22)
the sterile neutrino solution to the atmospheric neutrino
anomaly is consistent with BBN. Also, the large angle
MSW v, —v, oscillation solution to the solar neutrino
problem is also consistent with BBN as is the maximal
mixing vacuum oscillation solution (see, e.g. , Ref. [5j).
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