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Scaling Properties of Circulation in Moderate-Reynolds-Number Turbulent Wakes
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Circulation around closed contours (square boxes) of various sizes is computed from two-dimensional
spatial velocity data, acquired by the particle image velocimetry technique in the turbulent wake behind
a circular cylinder. Scaling is observed for an intermediate range of box sizes even at the low
and moderate Reynolds numbers of measurement. The scaling exponents are determined at various
Reynolds numbers and presented with a plausible interpretation.

PACS numbers: 47.27.Ak, 47.127.Nz, 47.27.Vf

Following Kolmogorov [1], the search for university
in turbulence has usually been made in terms of veloc-
ity increments Au„= u(x + r) —u(x), since the differ-
encing operation is presumed to eliminate the nonuniver-
sal large-scale effect. However, it has long been recog-
nized [2], and explored more fully in Refs. [3] and [4],
that some effects of the large scale persist well into the
inertial range. Assuming that large-scale fluctuations are
principally potential in nature, one can eliminate them by
considering vorticity instead of velocity increments. Vor-
ticity involves differences of velocity gradients and so,
from an experimental perspective, is not amenable to ac-
curate determination. However, once can measure with
relative ease and accuracy the circulation around a closed
contour 1, defined by the line integral

I, = u dl, 1

where the subscript r stands for a characteristic linear size
of the contour and u is the velocity vector. By Stokes
theorem, circulation equals the Aux of vorticity across
the surface bounded by the contour. It is therefore clear
that potential fluctuations do not contribute to I „which
allows us to examine the scaling properties of the vortical
part of the velocity field without measuring vorticity
directly. In this Letter, we report a few characteristics
of the circulation around closed contours in the turbulent
wake of a circular cylinder. To our knowledge, these are
the first measurements of their kind.

Three considerations prompted us to make these mea-
surements (aside from their novelty). First, structure
functions correspond to one-dimensional cuts of three-
dimensional turbulence and so cannot easily recognize
the contribution of filamentlike structures, while circula-
tion can take adequate account of them. Second, Migdal
[5] has calculated the probability density of circulation
by working with the Hopf functional equation for three-
dimensional turbulence, and it seemed useful to have an
experimental counterpart to the theory. Finally, there is
the attraction of obtaining some scaling properties with-
out invoking the ubiquitous Taylor's hypothesis.

Circulation was computed from a two-dimensional ve-
locity field acquired in a water tunnel by Suri, Juneja, and

TABLE I. Some pertinent experimental variables. The quid
is water as 24 C, and all quantities are given in cgs units.

Re

4540
3460
780
640
480
190

Up

31.5
24.0
15.0
12.0
9.1
3.7

1.32
1.32
0.476
0.476
0.476
0.476

14.8
8.50
1 .40
0.74
0.40
0.05

rl /pixel ratio

9.1

7.5
4.9
4.0
3.5
2.1

Sreenivasan [6]. The Reynolds number, Re, based on the
cylinder diameter, D, and free stream velocity, Uo, var-
ied from 190 (just past the three-dimensional transition in
the IIow) to 4540 (fully developed turbulence in some re-
spects). Table I lists some of the principal experimental
conditions [7]. The velocity data were acquired using the
particle image velocimetry (PIV) method. The PIV tech-
nique involves the illumination of a plane of the seeded
How field by a pair of laser pulses separated by a small
but finite time interval, and the capture of both pulses on
a single frame of photographic film. Each particle pair on
the frame conveys information on the local velocity field.
When the developed film is interrogated with a beam of
He-Ne laser, the spacing and orientation of the fringes can
be converted to the particle velocity at the beam location;
here, this was done by using a software from FFD Inc.
The accuracy of velocity data so obtained varied between
3% and 8%, with a typical value of about 5%.

The velocity vectors were obtained on a grid of size
44 X 66 pixels (a pixel was 1.36 mm in some and 1.8 mm
in other experiments); the grid was centered at 50 cylinder
diameters downstream [10]. The pixel resolution varied
from about 2 g at the lowest Reynolds number to about
9g at the highest Reynolds number, where g is the esti-
mated Kolmogorov scale. Denote x as the How direction
upstream of the cylinder, y as the direction of maximum
shear, and z along the cylinder axis. Velocity data were
obtained in both the transverse (x-Y) and the longitudinal
(x-z) planes. The x-z plane is essentially homogeneous,
and so results are presented for circulation in that plane.
25 independent realizations were considered for each set of
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data. Circulation was computed for a box of a given size at
all possible locations in the x-z plane, and the process was
repeated for all 25 realizations at a given Reynolds num-
ber. Issues of convergence of moments up to the sixth or-
der and potential sources of uncertainty were investigated
and are reported in Ref. [12]. These will be noted briefly
as appropriate.

Figure 1 shows the probability density function (PDF)
for the circulation around a box of linear size r = 8.
(Here and elsewhere, r is expressed in pixel units, but
can be converted easily to centimeters by using the data
given in Table I.) This PDF is typical for boxes of lin-
ear dimension 5 ( r ~ 25, and approximately Gaussian
as predicted by Migdal [5j. To understand this near-
Gaussianity, note first that the circulation around a given
box is equal to the sum of circulations around subboxes
which make up the box and that, if se is the smallest box
for which we can compute the circulation, one has

(/e)' ( le)'
(r„') = g P (r, ), (r, ), . (2)

l=1 j=1
The correlation length for Vg is empirically observed to
be of the order of four pixels, which allows us to consider
that the circulation around bigger boxes arises as the sum
of essentially uncorrelated subcirculations.

The above argument is rough at best, and the circulation
PDF is not strictly Gaussian; the departures are especially
significant for r ( 5, consistent with the fact that circula-
tion correlations are nonzero for small boxes. In fact, for

small r, the PDF approaches an exponential form. Here,
we have investigated departures from Gaussianity primar-
ily for intermediate scales, as functions of both the box size
and the Reynolds number. As expected, the mean value
(r, )/(r„)' was on the order of 10 4 for all cases, and
will not be discussed further. For one Reynolds number,
Fig. 2 shows the moments (~r„~"), for n = 3, 4, 5, and 6,
normalized suitably by the second moment, as functions of
the box size; also shown for comparison are the normalized
moments of the Gaussian. The circulation PDFs are mod-
estly skewed, with a roughly constant skewness of about
0.25 ~ 0.05. The fifth moment shows a greater variability
with r, reaching as high a value as 2, reconfirming that the
PDFs are not strictly symmetric (and hence not Gaussian
either). The fourth and sixth moments also show moderate
variability with r. Given the uncertainties in the moments,
it is not clear if the nonmonotonic trends shown by the fifth
and sixth moments can be taken seriously.

An important issue is the scaling of moments of
circulation (I „") as functions of the box size r: If the
PDF were strictly invariant with respect to r (e.g. ,

exactly Gaussian), it would have been enough to consider
the scaling of the variance. As seen from Fig. 2, the
uncertainties are significant for the fifth- and sixth-order
moments, and so the focus will be on lower moments.
Since odd-order moments are small, we have considered
the scaling of only the absolute value of circulation
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FIG. 1. The normalized PDF of circulation, P(1 „), computed
around a square box of linear dimension r = 8 pixels from
velocity in the x-z plane of the wake obtained at Re = 4540.
The mean value of circulation is very close to zero. The
circulation is positive in the anticlockwise direction. The
dashed line is the Gaussian distribution with the same standard
deviation.
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FIG. 2. Moments of circulation for Re = 4540, normalized
by the second-order moment. Moments of order three (dia-
mond), four (square), five (small circles), and six (circle) are
presented. The error bars (shown here for some typical box
sizes) have been determined by an assessment of the conver-
gence of moments as a function of the sample size, as well as
of how well the integrands I „"P(1„) close towards the tails of
P(1 „) Details can be found . in Ref. [12]. Solid lines represent
Gaussian values.
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TABLE II. Reynolds number dependence of the exponents Aq

and A4, inferred from the scaling of second and fourth moments
of circulation. A formally meaningful error estimate is difficult
to obtain but, as discussed in Ref. [12], the moments converge
to within about 5%—8%.

Re

E

I
K
E
O

4540
3460

780
640
480
190

2.26
2.23
2.14
2.12
2.10
2.04

4.42
4.34
4.25
4.08
4.02
4.0

10
1

15
I

20 25

FIG. 3. Compensated moments of order 1, 2, 3, and 4 for the
absolute values of circulation. The ordinates are shifted and
displaced arbitrarily to avoid cluttering (from top to bottom are
compensated moments of order I, 4, 2, and 3). The scale is
linear.

number of 4540. The Kolmogorov scaling expected to
hold at high enough Reynolds number suggests the gz

2
would approach a value of about 3, implying that A22'
would approach a value of about 23.

Two related comments are necessary. First, when these
measurements were made about four years ago, we were
stymied by the fact that, even at the highest Reynolds

defined as

(II, I") —r'". (3)
For Re = 4540, Fig. 3 shows the compensated moments
r ~"(lI „l") for n = 1, 2, 3, and 4, where the A„are de-
termined by requiring the best range of scaling for com-
pensated moments. While a larger scaling regime would
have been desirable, it is clear that the scaling is de-
fined reasonably well. For Re = 4540, the best estimates
are A~ = 1.13, A2 = 2.26, A3 = 3.38, and A4 = 4.42. A
similar analysis of Ref. [12] suggests, although with less
certainty, that A5 = 5.5 and A6 = 6.6.

In general, the A„depend on the Reynolds number. We
have made an extensive analysis of A2 and A4 at vari-
ous Reynolds numbers and present the results in Table II ~

The best fits to data suggest that A6 = 3Aq —0.5(~0.1),
although, because of poorer scaling of the sixth moment,
this statement should be treated with caution.

For the remainder, we focus on A2 whose values range
from about 2.04 at the lowest Reynolds number to about
2.26 at the highest Reynolds number considered here. If
we note that [13]

(II, I') = "(I ( )I') —"((&,)') — '",
where the last step invokes Kolmogorov scaling for
the second-order structure function [1], it follows from
Eqs. (3) and (4) that

Ay=2+ fg. (5)
Data from Table I suggest that the gq would increase
from about 0.04 at the lowest Reynolds number close to
three-dimensional transition to about 0.26 at the Reynolds
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FIG. 4. Comparison of scaling of the second moment of
circulation with the second-order transverse velocity structure
functions from velocity data at Re = 4540. In (b) and (c),
u and w are velocity components in the direction x and g,
respectively, and the separation distance r is normal to the
direction of the respective velocity components . Insets show
local slopes. It is readily apparent that circulation has a better
scaling.
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number of the measurement, the exponent A2 was substan-
2

tially smaller than the asymptotic value of 23 expected at
very high Reynolds numbers. We have checked our mea-
surements and analysis in the meantime, and confirmed
the results. A possible explanation [15] for this anom-
aly is the anisotropy of vortex configurations caused by
the large-scale shear in the flow. It has already been
pointed out [16] (see caption to Fig. 6) that one effect
of anisotropy in moderate-Reynolds-number shear Aows is
that Kolmogorov scaling applies selectively to the stream-
wise component of velocity, and that for it to apply to all
components of velocity, much higher Reynolds numbers
are needed than is usually thought.

Second, it is in principle possible to test Eq. (5) by
measuring gz as well. Unfortunately, there are problems
associated with such measurements at low and moder-
ate Reynolds numbers, again a reAection of the effects
of large-scale anisotropy. These are illustrated in Fig. 4.
While the circulation possesses reasonably unambiguous
scaling, the velocity increments at low and moderate
Reynolds numbers scale less convincingly. More impor-
tantly, at these Reynolds numbers, increments of different
velocity components (with separation distance normal to
the direction of the velocity) scale differently. For ex-
ample, we see in Fig. 4 that (Q, u„)2) has an exponent of
about 0.5 whereas ((Avv„) ), if there is any scaling at all,
possesses a substantially smaller value.

Finally, as has been pointed out in Ref. [14], the
circulation functions defined here can be thought of as
generalizations of the sign-singular measure [17]. In [14],
the generalized dimensions for circulation were calculated
directly from the data. These numbers are in essential
agreement with those inferred from the present values of
A„using the formula (3.20) in [14].

These measurements were inspired by conversations
with Sasha Migdal and Victor Yakhot of Princeton
University in mid-1991. The manuscript has benefited
significantly from useful remarks by Gustavo Stolovitzky
and Samuel Vainshtein. The work was supported by a
grant from the Air Force Office of Scientific Research.
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