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Long-Range Order in a Two-Dimensional Dynamical XY Model: How Birds Fly Together
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We propose a nonequilibrium continuum dynamical model for the collective motion of large groups
of biological organisms (e.g. , flocks of birds, slime molds, etc.) Our model becomes highly nontrivial,
and different from the equilibrium model, for d ~ d,. = 4; nonetheless, we are able to determine its
scaling exponents exactly in d = 2 and show that, unlike equilibrium systems, our model exhibits
a broken continuous symmetry even in d = 2. Our model describes a large universality class of
microscopic rules, including those recently simulated by Vicsek et al.
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The dynamics of flocking" behavior among living
things, such as birds, slime molds, and bacteria, has long
been a mystery. Recently, a number of simple numerical
models that exhibit such behavior have been studied [1,2].
For example, Ref. [2] considers a synchronous, discrete
time step rule in which an individual "bird" in a group
of "birds" determines its next direction of motion on each
time step by averaging the direction of its neighbors in a
certain area, and then adding some zero mean noise, while
keeping the magnitude of its velocity constant. Their
simulations in two dimensions find a transition between
an ordered phase in which the mean velocity of the flock
(v) 4 0 and a disordered phase with (v) = 0 as the
strength of the noise is increased.

The above two-dimensional model is very similar to
the 2D XY model [3,4] because the velocity of the
"bird, " like the local spin of the classical XY model,
also has fixed length and continuous rotational symmetry.
Indeed, it is easy to see that, in the limit that the
magnitude of the velocity goes to zero, on each time
step the "birds' are just picking a new direction, but
never actually move, the model reduces precisely to the
Monte Carlo dynamics of a two-dimensional XY model,
with the (small) bird velocity playing the role of the XY
spin. Since the 2D XY model does not exhibit a long-
range ordered phase at temperatures T ) 0 (due to spin
wave fluctuations), the long-range ordered state observed
in Ref. [2] seems very surprising. Indeed, in light of
the Mermin-Wagner theorem [5] for equilibrium systems,
its existence must depend on fundamentally dynamical,
nonequilibrium aspects of the model. In this paper,
we show, using a continuum dynamical equation which
describes a large universality class of related dynamical
models, that this is indeed the case. In particular, we
explicitly demonstrate the following: (1) that our model
differs from the equilibrium system for spatial dimensions
d ~ 4, (2) we can calculate the scaling exponents of this
model exactly for d = 2, and (3) the model does, indeed,
have a stable spontaneous symmetry broken state even in
two dimensions.

Our starting point is the continuum equations of motion
(EOM) [6]:
i), v + (v . iv')v = nv —

Pivot v —VP + Dt V'(iv' v)

+Did'v+D2(v V) v+ f,

Bp + V. (vp) =0, (2)
Bt

where P, Dt, D2, and DL are all positive, and n ( 0
in the disordered phase and n ) 0 in the ordered state.
The left hand side of Eq. (1) is just the usual convective
derivative of the coarse-grained velocity field v. The n
and P terms simply make the local v have a nonzero
magnitude (= Qn/P ) in the ordered phase. DL i z are
diffusion constants. The Gaussian random noise f has
correlations:

(f,(, t)f, ( ', t')) = »„~'(. — ')&(» —t'),
where 5 is a constant and i and j denote Cartesian
components. Finally, the pressure

P = P(p) = P c.(p —po)",
n=l

where po is the mean of the local number density and

p(r) and o.„are coefficients in the pressure expansion.
The final equation (2) rejects conservation of birds.

The essential difference between our model and the
equilibrium XY model is the existence of the convective
term in our model, which makes the dynamics nonpoten-
tial and further stabilizes the ordered phase. A heuristic
argument for the stabilizing effect of the convective term
can be given if we consider our model in Lagrangian co-
ordinates. In those coordinates, the convective term drops
out and the interaction between the velocity field is local
at each instance. However, at different times, the "neigh-
bors ' of one particular bird will be different depending on
the velocity field itself. Therefore, two originally distant
birds can interact with each other at some later time. It
is exactly this time dependent variable ranged interaction
which stabilizes the ordered phase.
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To treat the problem analytically, it is more convenient
to use the Eulerian coordinates as in Eqs. (1) and (2).
In the rest of our paper, we concentrate on studying the
symmetry broken phase, where o. ) 0. We can write
the velocity field as v = vox~~ + Bv, where vox~~ = (v)
is the spontaneous average value of v. We will ignore
Iluctuations in the magnitude ~v~ from its optimal value

of Qn/p, since they decay in a finite time (of order —).
Choosing our units of velocity so that Qn/p = 1, we
can now write the velocity as v = (vi, QI —~v~2)—
(vi, 1 —

z [vi ~ ), provided )vi )

Shifting to a comoving coordinate frame moving with
velocity vox~~, v = (vi, —z(vi ~ ), and the convective
term becomes (vz Vz)vq —z(vi ( 8~~ v~. We will

neglect the second term; this will be justified a posteriori.
The equation of motion then becomes

a, vi + A(vi Vi)vi = —7'iP + DI.V'I. (Vi v~)

+ D~V&vi + D~~B~~vz + fx,
(3)

86p + ppV'g vi + AV' . (v6p) = 0,
0t

(4)

with D~~
= D~ + D2 and 6p = p —po. Thebookkeep-

ing coefficient A = 1 in the physical case.
We first study the linearized EOM. We rescale lengths,

time, and the fields vi and 6p according to

x~ bx~, x~~ b x~~~, t ~ b't, v~ b+v~, 6p ~ b+p6p.

We choose the scaling exponents to keep the diffusion constants Di, D~~~, Di = D~ + DI. and the strength 5 of the
noise fixed. The reason for choosing to keep these particular parameters fixed rather than, e.g. , o ~, is that these four
parameters completely determine the size of the equal time fIuctuations in the linearized theory, as can be seen by
solving that theory in Fourier space:

J 2 6l. J I.
J

( )
J

( )) 2 ((Dzqz + D~~q~~)qi (Diqi + D~~q~~)qJ

The exponents for the linear theory can be determined
very easily: z = 2, g = 1, y = 1 —d/2, and ~~ = y,
because the density fluctuations of 6p are comparable to
those of vz. Therefore the linearized theory implies that
vi Iluctuations grow without bound (like Lx) as L
for d ~ 2, where the above expression for g becomes
positive. This implies the loss of long-range order in
d~2.

Making the rescalings as described above, the
other parameters in the model scale as A —b ~' A,
o.„—bi'"cr„with yx = y + 1 = 2 —d/2 and
y„= z —g + ng = n + (1 —n)d/2. The first
of these scaling exponents to become positive with
decreasing d are yq and y2, which both do so for d ~ 4,
indicating that the A(vi V)vi and o.zVi (Bp ) nonlin-
earities are both relevant perturbations for d ( 4. So for
d & 4, the linearized hydrodynamics will break down.

An e = 4 —d expansion will obviously not be of
much use in our problem in d = 2. But fortunately,
because of the various symmetries in Eqs. (3) and (4),
we can obtain the exact scaling exponents in d = 2.
First of all, the reduced equations of motion Eqs. (3)
and (4) have a "CJalilean invariance" [7]: i.e., if we let
v i (r, t) v ~ (r, t) + v ~ o and simultaneously boost the
coordinate xi xi —Avi ot, Eqs. (3) and (4) remain
invariant for arbitrary values of v ~ 0. This implies that
there is no "graphical" renormalization of the nonlinear
vertex (vi 7'i )vi .

, it can only renormalize by rescaling.
Furthermore, in precisely two dimensions, D~~ and 5 are
also only renormalized by rescaling. To see this, note
that in two dimensions vz has only one component (call

66p + pot', h + ~V, (apV', h) = O,
E9 t

(7)

where the new effective noise r1 = V'i f/V'~ has long-2

ranged correlations. In Fourier space

This model only corresponds to our original model (3) and

(4), and hence only describes birds, in d = 2. However,
we will analyze this model (6) and (7) in arbitrary spatial
dimensions d, with the goal of understanding it in the
physical case d = 2.

It is easy to see that D~~ and 6 cannot be renormalized
in this model. 6 cannot be renormalized because it is
the coefficient of a nonanalytic, long-ranged noise-noise
correlation function. The nonlinear couplings A and o „ in

(6) and (7), being analytic (i.e., local in space and time),
can therefore not generate such nonanalytic correlations.

The diffusion constant D~~ likewise cannot be renor-
malized, because any such renormalization must clearly
involve at least one A with at least one external h leg,
and hence at least one power of qz. This can (and does)
renormalize D~, but cannot renormalize D~~.
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it v, ), which can be written as v, = B,h. The equations
of motion (3) and (4) can then be rewritten in terms of h:

h+
2

~~ h~ = —~ p+D ~ h+D~~~~~h+rl

(6)
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Implementing the dynamical renormalization group
[8,9] we find, quite generally

dD~~

dl
= (z —2$)D((,

= (z + 1 —d —g —2A)A,

=(A +z —l)A,

dDg
dl

=
l.z

—2 + G.((g.,))]D. ,

dpo
dl

= Iz —1+ Gp((g ))1]po,

do&

dl
= Iz —1 + Gi((g-))I']~),

z + (n —1)A —1 + " o-„,G.Hg ))
dl gn

(8)

2(d+1) d+1
z

5 A
= 3 —2d

If we combine the above renormalization group (RG)
equations (8), we can obtain the RG fiow equations for
the effective coupling constants g, and the parameter I:

d = —
I

1 —G.((g.))]1
—

—,I:G Hg. )) + G, ((g.))]l',

= 2I4 —d —2GiHa ))]gi, (12)

dl
= 2I2n + (1 —n)d]g„+ G, ((g ))

0 n+3+ (G —G, ) I — G, (13)

from which we see that g 1 and g 2 become relevant
below d = 4, while all g ~2 are irrelevant near d =
4. Hence we can neglect all g„~2's, and, therefore,
all of the cr„~2's as well, at least near d = 4. The
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with the parameter I = D3 /go ~ po, and the effec-
5/4 1/4tive nonlinear coupling constants g) = AA / /Di D~~

i)/2 n/2
& (n+3)/4 (n —1)/4 n/2

an gn)2 = &n PO / i
)[

~l
G~ ~ „'s denote the nonvanishing graphical corrections to
Dg, pp, and o „, respectively. Note that they explicitly
depend on only the coupling constant's g, 's, by construc-
tion. Note that the absence of graphical corrections to D~~,

5, and A is exact to all orders in perturbation theory, as
discussed earlier. Since we seek a fixed point at which 5,
A, and D remain fixed, we get the following three exact
constraints on the three exponents:

A'+z=1, z=2$, d+g+2A =z+1,
(9)

whose solution is

parameter I only becomes relevant below d = 1.5,
where y ) 0, i.e., when the ordered phase disappears.
We have calculated the graphical corrections G~ and
G2 to one loop order near d = 4, and obtain G~ =
(11/192~ ) (gi/2 + g2)gi/2, G2 = 0. We do not know
whether the vanishing of G2 to this order is the result
of some symmetry of the problem that we have failed
to recognize, in which case G2 would vanish to all
orders, or if it is purely coincidental. In either case, to
one loop order, inserting these results for the graphical
corrections into the recursion relations (16) yields a
fixed line (actually a fixed hyperbola) (g)/2 + g2)g~ =
768~2@/55. This summarizes our picture for model (6)
and (7) in 4 —e dimensions. What happens as we move
down to two dimensions, which is the only dimension
in which the model (6) and (7) actually describes birds'?
If G2 vanishes to all orders in e, we will still get a
fixed line, as in 4 —e dimensions, all the way down to
d = 2, although its position will be shifted (and it might
become curved) away from that given by the one loop
calculation. If G2 does not remain zero, then the fixed
line collapses to a fixed point. In either case, the scaling
exponents continue to be given by Eq. (10), since those
results depended only on the symmetries of the model.

So in d = 2, the exponents are given by Eq. (10),
6 3 1

i e , z. =. f, g =
&, and A

= —
&. These exponents

can be checked experimentally (or from simulations) by
measuring, e.g. , the density-density correlation function,
which is given, in Fourier space, by

(Ip(q, ~) I')
2 2

(~' —c'qi)' + ~'Ãi(q, ~)qi + D~lq~~]'

where c = Qo. ) po is the speed of sound and Di is the
renormalized diffusion constant. As a function of ~, this
correlation function (like all of the correlation and re-
sponse functions for this problem) has two sharp peaks
at ~ = t-q~, of width D&q& + DI~q~~. Thus, in theR 2 2

frequency regime containing most of the weight of the
correlation function, D3 (q3, q~~, cu) can be evaluated at
~ = cq~. Using standard renormalization group argu-
ments and the recursion relation (8) for D3, we find that

R-D (q3q3ii, co cq3 ', A, po, o ) = qi f ~
. (15)

kqi)
Similar RG arguments yield the finite size scaling of the
real-space, real-time rms fluctuations of v&.

(I.
&I~3 (t, t)l ) = const —L gl(I-'. )

—./s ( I„
collst I 3 gI ~3/~) '

where L~ and LIl are the spatial dimensions of the Hock
perpendicular to and along the mean direction of motion,
respectively, and in the last equality we have used the
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value of g in d = 2. Since this goes to a finite constant
as L ~ ~, we see that long-ranged order is stable in this
model in d = 2, as we claimed in the Introduction.

Now that we have obtained all the exponents, we need
to return to our original model (1) and (2) and verify
a posteriori all of our assumptions. In particular, we
must show that it was valid to neglect ~v~ [ B~~v~, which,
under the rescalings Eq. (3) scales like b-++' ~ = b
Using the linearized results for ~, z, and P, we get
6 = 2g + z —g = 3 —d, which is clearly less than
zero near d = 4. Does it remain (0 down to d = 2?
Experience with, e.g. , the 4 —e expansion for the P
theory of critical phenomena suggests that it does. In
that problem, a P perturbation also has a linearized
RG eigenvalue 3 —d. This term nonetheless appears to
remain irrelevant all the way down to d = 2, judging by
the success of extrapolations [10] of 4 —e results for the
Ising model down to d = 2. The apparent contradiction
between this result and the eigenvalue 3 —d, which,
of course, becomes positive for d ( 3, is that graphical
corrections of O(e) to this result occur, and keep the
eigenvalue negative down to d = 2. It seems just as safe
to assume that this happens here as in P theory, and so
we strongly suspect that it does, and that our results for
the exponents do hold exactly in d = 2.

Even in the wildly unlikely event that the cubic vertex
does become relevant above d = 2, however, we can still
show that our model has long-ranged order in d = 2. If
the cubic vertex does become relevant, we can no longer
obtain the exact scaling exponents in d = 2, because both
A and D~~ are now renormalized.

However, not all the scaling relations are lost. The
random force is still renormalized, since even the con-
tributions from the new vertex ~v~~ cl~~v~ are propor-
tional to q~~, which still vanishes as ~q~ 0. Further-
more, there is a new scaling relation coming from the ro-
tational invariance, i.e., since the direction in which we
choose to break the symmetry of v was arbitrary, we
must, even after renormalization, be able to resum the
nonlinear terms (v~ V)v~ and )v~) t7~~vz vertices into
the form (v V')v. This requires that the graphical cor-
rections to (v~ V)vz and )v~~ t7~~vz be the same. To
find a fixed point, therefore, we must have their rescalings
to be the same as well. This leads to a new scaling rela-
tion 2~ —1 = 3g —g, or g = g —1. Taken together
with the last exponents relation in (9), this leads to the fol-
lowing scaling relation between z and y: g = (z —d)/3.
Now we expect on physical grounds that z ~ 2 for all di-
mensions d ( 4, since physically, the motion of the birds
enhances the mixing, and we know the corrections due
to this effect diverge below d = 4. Hence we expect
hyperdiffusive behavior, which implies z ~ 2. Then the
scaling relation g = (z —d)t'3 implies ~ ~ 0, i.e. , true
long-range order in d = 2.

Numerical simulations [2] indeed find a long-range or-
dered state in the low "temperature" regime, in agreement
with our predictions above. A detailed study of the corre-

lation functions to test our predictions for the scaling ex-
ponents [e.g. , measurements of the p-p correlation func-
tion in Eqs. (14)] would clearly be of great interest.

Considerable work remains to be done on this model.
The properties of the low temperature phase of our origi-
nal model (1) and (2) in d ) 2 remain to be determined.
Since the symmetries which prevent the renormalization
of the noise strength 6 and the diffusion constant D~~ are
lost in d ~ 2, it is no longer possible to obtain exact
exponents. However, an e expansion on the full model
(1) and (2) should give quite accurate exponents in d = 3.

There is also the question of the transition from the
ordered to the disordered state. Without the convective
vertex, our model (1) and (2) is just model A dynamics
for a @ theory, as studied by Halperin, Hohenberg, and
Ma [11]. However, we can show that, as in the low tem-
perature phase, the convective vertex becomes relevant at
the transition in d = 4 as well. An e expansion study of
this problem is also currently underway. We will include
these subjects and the detailed account of this Letter in a
future publication [8].
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