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Three-Dimensional Apollonian Packing as a Model for Dense Granular Systems
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An iterative procedure according to which new spheres are inserted between existing ones is realized
for computer simulation of dense granular systems. The method is based on the rigorous geometrical
Voronoi-Delaunay approach generalized for pore volume analysis inside an ensemble of polydisperse
hard spheres [N. N. Medvedev, Dokl. Akad. Nauk 337, 767 (1994) [Dokl. Phys. Chem. 337, 157
(1994)]]. Models with packing fraction 71

—0.9 are constructed. The particle size distribution and
fractal nature of the packings are investigated. The fractal dimension D = 2.45 is obtained.

PACS number»: 81.35.+k, 61.43.Bn, 61.43,Hv

The structure of the dense packings of hard spherical
particles is an old but still interesting problem. The general
laws of space filling in noncrystalline systems are of
basic interest for researchers; for industry it is important
to obtain packings with high bulk density. Therefore
the packing of hard spheres is an object of permanent
experimental and theoretical studies (see, e.g. , [1—11]).

The bulk density of packing is characterized by packing
fraction g, or porosity e = 1

—q being a fraction of
unoccupied volume. Different factors have effects on
packing density. However, the particle size distribution
is known to play a basic role. The maximum value of
g for random packings of equal hard spheres amounts
up to about 0.64 [2—4]. More dense packings can be
obtained using spheres of different sizes by filling the gaps
between large particles with the smaller ones. In this case,
theoretically, any value g close to unity can be reached.
However, many small particles should be involved, and
the largest and smallest radii will differ by many orders
of magnitude. In practice, the range of particle radii is
always limited. The size of coal particles used to produce
grinds for coke making differ by a few orders [5]. The
difference is less for ceramic and metallic powders. For
atomic systems the atom radii differ no more than by a
factor of 2 —3. There are analytical approaches that study
relations between a particle composition and bulk density
for binary and multicomponent mixtures [6,7]. However,
the general problems of hard sphere packings are far from
being solved.

Computer simulation of packings is especially interest-
ing. In this case, the radii and coordinates of particle cen-
ters are available. There are many methods to construct
computer models of hard sphere packings. Some of them
were considered in the review [8] reporting the packings
of equal spheres and binary mixtures. Other particle size
distributions including the Gaussian and log-normal laws
were used in [9] and [10]. However, it is not so easy to ob-
tain a high packing density in computer simulation. The
authors of these papers failed to get g value exceeding
0.65 for their polydisperse systems using the conventional
Monte Carlo [9] or the "Bennet-type" methods [8, 10].

In this Letter we are proposing a geometrical method
for constructing packings of any density by performing
a procedure according to which the new spheres best fit
between the existing ones. For a two-dimensional case
such a packing is called the Apollonian packing [12] after
the ancient Greek mathematician who had considered the
problem of the circle inscribed among three given circles
in a plane. For our purposes, however, we must be able
to solve a three-dimensional Apollonian problem, i.e. , to
inscribe a sphere among four given spheres in a space.
Recently, such a problem was solved at the generalization
of the well-known Voronoi-Delaunay approach to the
analysis of unoccupied volume distribution in the ensemble
of differently sized spheres [13].

The Voronoi-Delaunay approach has long been em-
ployed to study the structure of the computer models of
simple liquids and amorphous phase, see, e.g. , [14]. In the
last years, researchers have used this method to describe
the unoccupied volume inside packings of equal spheres.
The pore size distribution was studied using Voronoi poly-
hedra [15]and Delaunay simplices [16]. The Voronoi net-
work was also used to study the permeability of the dense
packings of equal spheres [17].

We are omitting here the details of the Voronoi-
Delaunay generalization to nonequal spheres. Note, how-
ever, that the known algorithms for Voronoi polyhedra
and Delaunay simplices [18,19] does not work for this
case. The usual Voronoi polyhedra fail in studies of the
volume between particles [20]. Indeed, the Voronoi poly-
hedron is determined for a particle center and is the vol-
ume of a region all points of which are closer to the given
center than to the centers of all other particles in the pack-
ing. Studying the unoccupied volume, which is limited by
particle surfaces, one must deal with another construction.
It can be called the Voronoi S region [13] and defined
as the region of volume all points of which are closer
to the surface of the given sphere than to the sttrfctces
of other spheres of the packing. Both of these construc-
tions are identical for systems of equal sphere», but for
different radii they are diverse. However, if there is not
a large difference in sphere radii, or the packing is rather
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dense and homogeneous, the Voronoi 5 regions resemble
the usual Voronoi polyhedra. They differ only in the fact
that Voronoi 5 regions have slightly curved edges and
either convex or concave faces (see Fig. 1 in [13]).

The Voronoi-Delaunay method is convenient for our
purposes, because the vertices of the Voronoi 5 regions
(as well as those of the Voronoi polyhedra in monodisperse
systems) determine the centers of maximum sized spheres
inscribed between particles. Having at hand these intersti-
tial spheres for a given packing, one can turn some of them
into new particles. Avoiding overlapping between the new
particles, we get a new configuration of hard spheres. One
can exploit this technique in an iterative loop to create a
more and more dense packing (see Fig. 1).

Our models were constructed in a cube with periodical
boundary conditions. The largest number of particles we
could create in a packing was about 40000. This allows
us to reach the value g —0.9 starting with the initial
configurations consisting of about 100 particles. This
limit is not a restriction of the method, but a result of
our computer power. The main CPU time and RAM are
needed when calculating the Voronoi 5-region tessellation
to get the whole set of interstitial spheres.

The model systems discussed below were constructed to
fill in the biggest pores first. The interstitial spheres with
radii exceeding a given cutoff length r,. were taken into
account. The spheres with the largest radii were turned

into new particles first. We had to perform a few iterations
(i.e., put new particles into the packing and recalculate the
interstitial spheres) to fill in all the gaps in the packing
where the particles of radius equal to I, or larger can be
inscribed. Thereafter the current value of the cutoff length
was decreased, and the filling of the packing was continued
using a new value of I., This procedure gives us a set of
configurations filled in for the given values of f,

The composition of dense polydisperse packings are
usually studied using the "weight" distribution function
m(r) = ~err n(r), where n(r) is the particle size dis-
tribution. Figure 2 gives m(r) for two models filled up
to cutoff length I, = 0.05 and having g~ = 0.856 and

g2 = 0.862. The initial configuration for the first model
had g ~

= 0.300 and was constructed by the random throw-
ing of hard spheres into the model cube. The initial con-
figuration for the second model had g2 = 0.550 and had0

been obtained by compressing the first initial configuration
by the Monte Carlo method. The particle size distribu-
tion of the initial configurations was given by the Gauss-
ian law with a mean value R = 0.5 and standard deviation
o = 0.05. The statistical noise in the distribution in the
region of "coarse" particles (most of them are the initial
ones) was decreased by using larger initial configurations
containing 2000 particles. However, due to computer limi-
tations we could fill in such packing up to a cutoff length of
about r, , = 0.2. The region of "fine" particles was reached
starting with the initial configurations of 100 particles. The
curves in Fig. 2 have been obtained by linking the corre-
sponding parts of the distribution at r, . = 0.2.

A detectable difference in m(r) of our models in the
region of coarse and mean-sized particles (r ) 0.3)

FIG. 1. A two-dimensional illustration of the packing proce-
dure. All interstitial spheres (empty circles) are determined for
a given initial configuration of spherical particles (full disks)
(a). Some of the interstitial spheres are turned into new parti-
cles of the system (the largest sphere is chosen from the over-
lapping ones). In a result, we have a new configuration of
particles and calculate a new set of interstitial spheres (b). In a
similar way, nonoverlapping interstitial spheres are turned into
new particles of the system (c). Repeating the procedure many
times, one can fill in the space with any high density (d).
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FIG. 2. Weight fraction of particles in the packings vs particle
radius. Dotted and dashed lines correspond to the models ob-
tained from initial configurations of different density (see text).
Solid lines are calculated from the formula m(r) —r
which describes the asymptotic behavior for the Apollonian
packings within "hne" r. The packing fractions of the mod-
els are gI = 0.865 and g2 = 0.867.
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depends on the initial configurations. On the other hand,
one can see that the weight composition of fine particles
(r ( 0.3) is the same for both models. Additional cal-
culations showed that the composition of fine particles is
also insensitive to the form of the initial particle size dis-
tribution. Moreover, m(r) in this region is well described
by the asymptotic law m(r) —r + with D = 2.45 (see
below).

This weight distribution can be compared with experi-
mental results. The available bimodality of distribution as
well as the relation between the midsized and coarse par-
ticles are in accord with the conclusions of the experimen-
tal paper [11],where the polydisperse packings of glass
spheres of the same density were obtained. Besides, our
calculations are pointing to the universal behavior of the
"fine particle. " However, special investigations are nec-
essary to make real packings with the Apollonian particle
size distribution.

We have also studied the fractal properties of our
models. It is known that the Apollonian packings are
self-similar [12]. However, so far only two-dimensional
systems have been studied [21—23]. In such fractals the
number of particles N(r, ), the radii of which exceed
a given cutoff value r„obeys the law N(r, ) —r,
where D is the fractal dimension. Our computer mod-
els can readily be employed to determine the D value by
drawing the N(r, ) dependence in the logarithmic coordi-
nates (see Fig. 3). For small r, the dependence could
be well approximated by a straight line whose slope
yields the D value of 2.40. The fractal dimension can
also be estimated from the porosity [22]. The relation
s(r, ) —r, +

h. olds for three-dimensional fractals. The
corresponding dependencies for our models are also given
in Fig. 3. The fractal dimension estimated from the poros-
ity is 2.50. The coincidence of this value with that esti-
mated from the number of particles N(r, ) is considered
to be satisfactory, taking into account a relatively small
change of the length scale in our models (the particle radii
differ a bit more than by a factor of 10). We estimate
the value of D as 2.45. This value is obtained equally
for models created from initial configurations of different
density (see Fig. 3). Our additional calculations show that
more broad initial radius distribution (cr = 0.15) gives
the same result. Nevertheless, the fractal dimension of
the packing may depend on the method of preparation,
e.g. , if the interstitial spheres with smaller radii are pre-
ferred to larger ones. This is in contrast to our procedure.
For two-dimensional Apollonian packings the different
authors give D values from 1.3 to 1.5 [21,22].

We have noticed when creating the models that the
mean number of faces of the Voronoi 5 regions f
decreases monotonously with the number of iterative steps
of the procedure. For initial configurations and after
several first steps of the procedure, we obtain f = 14.5,
which is close to the value of the mean number of the
faces of the Voronoi polyhedra in the disordered packings
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FIG. 3. The log-log dependence of the number of particles
N(r, ) (circles) and porosity a(r, ) (rhombs) for our packings
vs the cutoff length r, . Open symbols refer to the model
constructed from the initial configuration of the low density

g&
= 0.300; closed symbols are from g2 = 0.550. The same0 0

dependences for the average number of the faces of the Voronoi
S regions f are in the inset.

of equal spheres [14]. At the end of our calculations (after
a few tens of steps) the f falls to about 10. The reason
is clear from a two-dimensional illustration in Fig. 4. A
new particle inscribed into the system at a far step of the
procedure has, as a rule, only three geometrical neighbors;
i.e., the Voronoi 5 region of the given particle has three
faces. As a result, the topology of the Voronoi network
will be similar to that depicted in the inset of Fig. 4. This
pattern resembles the Sierpinski carpet [12]. For a three-
dimensional case, the new particles are sure to have only
four geometrical neighbors, and the Voronoi network is
similar to the three-dimensional Sierpinski carpet. From
this, one can calculate that the f value converges to 8 for
a three-dimensional Apollonian packing.

We have calculated the averaged number of faces of
the Voronoi S regions f for our models as a function
of the cutoff length r„' i.e., the Voronoi 5 regions were
constructed for configurations filled in up to a given value
of r, . The inset of Fig. 3 demonstrates the dependence
of f —8 on r, in the logarithmic scale. For small r„ it
can be approximated by a linear function with the tangent
of the slope angle being 0.45. Note, this value is close to
that for the porosity (see also Fig. 3).

In summary, we are proposing a method to calculate
three-dimensional Apollonian packings. It has been used
to create computer models of dense packings of polydis-
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FIG. 4. A two-dimensional illustration of inscribing a new
particle into the model at the far iterative step of the procedure.
A new particle has only three geometrical neighbors: three faces
of the Voronoi S region. (For three dimensions it has four
faces. ) The Voronoi network of the model is (asymptotically)
similar to the one depicted in the inset.

perse hard spheres. Having at hand such models one can
predict particle size distribution to get a packing with high
bulk density [11]. The fractal nature of such models is
investigated. This property of dense polydisperse pack-
ings should be taken into account in the interpretation of
the fractal behavior obtained for the "Bernal-type" models
[24,25]. One should also have in mind the fractal nature of
the Voronoi network of such packings. It is interesting for
percolation and diffusion problems, because the Voronoi
network is a "navigation map" of the interparticle volume.
Flows and impurity particles move along the bonds of the
Voronoi network [13,17].
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