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Scaling of the Coulomb Energy Due to Quantum Fluctuations
in the Charge on a Quantum Dot
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The charging energy of a quantum dot is measured through the effect of its potential on the
conductance of a second dot. This technique allows a measurement of the scaling of the dot's charging
energy with the conductance of the tunnel barriers leading to the dot. We find that the charging energy
scales quadratically with the reAection probability of the barriers. The observed power law agrees with
a recent theory.
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Charge fluctuations reduce the effects of the Coulomb
blockade [1] on electron transport in nanostructures. For
example, Coulomb oscillations in the conductance of a
quantum dot —periodic oscillations as a function of the
voltage on an external gate electrode [1,2]—can only
be observed when the conductance G of the barriers
connecting the dot to external leads is reduced below
2e /h, i.e., in the tunneling regime [3,4].

The influence of quantum fluctuations in the Coulomb
blockade regime has recently been studied theoretically
by applications of scaling- and Luttinger-liquid theory [5—
11]. One of these studies [7,8] explicitly considers the case
of a split-gate defined semiconductor quantum dot, and
predicts a scaling of the charging energy associated with
the addition of an electron to the dot with the conductance
of the point-contact barriers, according to

U* —U(1 —T) '

Here, U =—e2/C is the bare charging energy (C is the
self-capacitance of the dot), U* is the effective (or "renor-
malized") charging energy observed for finite barrier con-
ductance, N, the total number of quantum point contacts
leading to the dot, and T the transmission probability of
the contacts [12]. The result (1) was derived by utiliz-
ing a mapping of the two-dimensional dot geometry to a
one-dimensional model [13] with interactions equivalent
to Ref. [6]. Observation of such a scaling behavior would
thus be a strong support for the applicability of Luttinger-
liquid theory in describing the infIuence of quantum fIuc-
tuations on charge transport in nanostructures.

Unfortunately, conductance measurements [3,4] are
not well suited to test Eq. (1), because of the occurrence
of complicating cotunneling processes [14,15] when
the barrier conductance approaches 2e /hz. In this Let-
ter, we report results obtained with a fully adjustable
double quantum-dot structure, defined electrostatically
in a (Al, Ga)As modulation doped heterostructure. This
setup is designed to allow for a direct measurement of the

charging energy U as a function of barrier transparency,
and does not suffer from ambiguities in the determination
of U due to cotunneling processes. We discuss an experi-
ment that probes the role of quantum charge fluctuations
in Coulomb-regulated transport. We use the device in
an electrometer [16] configuration that allows a direct
determination of U as a function of barrier conductance.
We find good agreement between theory and experiment.

A schematic layout of the device is shown in Fig. 1(a).
The hatched areas are the TiAu gates; crosses denote
Ohmic contacts. The device consists of two adjacent quan-
tum dots, 1 and 2. Gates A through F are used to define the
barriers leading to the dots, and the electrochemical poten-
tial of the quantum dots can be adjusted through gates I
and II. The lithographic diameter of each dot is about
1 p, m. These relatively large dimensions are necessary
to minimize cross talk between the gates; they also imply
[15] that confinement effects on the transport properties
are negligible, a prerequisite for the theory of Refs. [7,8].
During the experiments the samples are kept at 40 mK in
a dilution refrigerator (we estimate the electron gas tem-
perature to be 150 mK); the conductance G = Gi4 is mea-
sured between Ohmic contacts 1 and 4, using standard
low-frequency lock-in techniques.

The mode of operation of the electrometer experiment
is schematically depicted in Fig. 1(b). What is measured
is the dependence of G on V~ii, the voltage on gate II. In
our double-dot device, scanning gate II induces Coulomb
oscillations in both dot 1 and dot 2, but with a much
shorter period (in V~ii) in dot 2, because of the larger
dot-to-gate capacitance. The top panel of Fig. 1(b) shows
the stepwise increase of n2, the number of electrons on
dot 2, within a Vgii-voltage range where n~ only changes
by 1. The stepwise increase of n2 causes sawtooth-
shaped oscillations in the energy AF needed to change
the occupancy of dot 1 by one electron. As shown in the
bottom panel of Fig. 1(b), these oscillations are rellected in
the conductance of dot 1: An additional sawtooth behavior
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is superimposed on the (dashed) line shape one expects for
the dot 1 Coulomb-blockade conductance peak without a
charging energy for dot 2. The full curve in Fig. 1(b) is,
in fact, a fit to an experimental trace (dotted curve), using
a theory we will discuss below.
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The size of the sawteeth is a measure of the charging
energy of dot 2. Dot 1 thus acts as an electrometer [16]
that measures the changes in the potential of dot 2. In the
absence of a charging energy of dot 2, the conductance
is given by the usual Coloumb oscillation peaks, which
we have indicated with the dashed line (obtained by
setting U2 = 0 in the equations below). Subtraction of
the dashed and the full line gives the trace shown in the
middle panel of the figure. We have also subtracted the
same background from the experimental trace. Using
the subtracted trace, we are able to fit the experimental
curves by adjusting the parameter U2 as explained below.
This procedure allows us to determine the effective
charging energy of dot 2 fairly accurately.

We will now discuss an experiment that uses this method
to measure the scaling behavior of U2 with the conductance
of barriers BC and DE. In the left panel of Fig. 2 we
plot G vs V~ii in a series of measurements where the
barriers between dot 2 and the wide 2DEG are gradually
adjusted from the metallic to the tunneling regime. From
top to bottom we have Gac, GDE = 1.3e /h, 0.65e /h,
0.43e2/h, 0.14e2/h, and 0.05e2/h, respectively, while in
all traces G~a, GnE, GFF = 0.05e /h, so that dot 1 is
always fully in the Coulomb blockade regime. One clearly
observes the sawtooth structure on the dot 1 Coulomb
oscillation due to the electrometer effect. In addition, one
finds that for increasing conductances G~c and GDq the
sawtooth feature is much less pronounced. In view of
the arguments given above, it is obvious to attribute these
observations to the scaling of the charging energy U2 as a
function of the conductance of barriers BC and DE. Note
that the period of the sawtooth feature is unaffected by the
changes in G~~ and GDE. We will explain below that
the sawtooth period is determined solely by the classical
electrostatics while its depth is a measure of thermal and
quantum fluctuations.

experiment theory
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FIG. 1 . (a) Schematic layout of the double-dot sample.
The hatched areas denote gates, the crosses Ohmic contacts.
(b) The operating principle of the electrometer experiment:
scanning Vg [ [ leads to an increase in n2, the number of
electrons on dot 2. The concomitant sawtooth oscillations in
AE, the minimum energy required to change the occupancy
of dot 1. Full lines are results of the model calculation and
the bottom panel shows a fit to the experimental trace (dotted
curve). The dashed line corresponds to the case where there is
no charging energy for the second dot. In the middle panel we
have subtracted the conductance of the first dot from the result
obtained when there is no charging energy of the second dot.
The size of the resulting oscillations thus measures the effective
charging energy of dot 2, which is used for determining U2, as
plotted in Fig. 3.
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FIG. 2. Traces of G vs V~]I in an electrometer experiment,
where the conductance of barriers BC and DE is varied. An
offset of 0.25G/G„„„ is used between consecutive curves.
Left panel: Experimental data, where from top to bottom
Gac, GoE = 1.3e /h, 0.65e /h, 0 43e /h, 0.14e /h, and.
0.05e /h. In all traces GAn, GaE, Gst: = 0.05e /h. Right
panel: The results of model calculations using Eqs. (1), (4),
and (5).
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this formalism treats occupation-number fluctuations of
quantum-mechanical and thermal origin on an equal foot-
ing. ) With this in mind, we model the effect of quan-
tum fluctuations of the charge on dot 2 by invoking a renor-
malized charging energy of Eq. (1), as follows. First we
replace the deviation 6E(n &, nz) in Eq. (3) by its renormal-
ized counterpart BE'(n~, n2). The charging energy that
controls the deviation away from the optimum number of
electrons on dot 2 (for a fixed number of electrons on dot
1) is thus assumed to be renormalized by the quantum fluc-
tuations. We then have

FIG. 3. Plot of the ratio U2/U2 between renormalized and
bare charging energy of dot 2, vs (1 —T), where T is the
transmission of barriers BC and DE that control the coupling
between dot 2 and the external leads. The linear dependence
found in this plot indicates the validity of a scaling law of the
type in Eq. (1).

(n 1 n2) [U& —U) z/4U2]6 n]

+ U2(Bnz —Bn) U)2/2Uz) . (4)

Within this model we can generalize the rate equation
approach of Ref. [18] to our double-dot system and then
solve for the linear conductance. We obtain

In Fig. 3 we plot the values for Uz/Uz, obtained by the
fitting procedure discussed above, in the different curves
of Fig. 2, vs (1 —T)2, where T is the conductance of
barriers BC and DE, measured in units of 2ez/h. The fit
obtained is strong evidence that the scaling law in Eq. (1)
contains the correct physics note that N, = 2 indeed
corresponds to the total number of quantum point contacts
connecting to the dot.

We have developed a theoretical model of transport
through a quantum dot coupled to a second dot, which
includes the effects of charge fluctuations. Using this
model we have produced the calculated traces in the
right-hand panel of Fig. 2. We start by considering the
electrostatic energy of the coupled dot system [17],

E(n~, nz) = U~n~ + Uzn2 + U~zn~nz
2 2

+ e g P n, a;~Vgj, (2)
i =1,2 j= i, i I

where n; is the number of electrons on dot i. The constants
U;, UI2, and a;~ can be expressed in terms of the elements
of the capacitance matrix of the system. Let us define
as n;p the (generally noninteger) number of electrons on
dot i that minimizes E(n&, nz). We now may write the
dependence of E(nt, n2) on small deviations Bn; = n, —
n;0 as

E(n~, nz) = E(ntp, n2p) + BE(n~, nz), (3a)

BE(n~, nz) = U~Bn& + U26n2 + U~ Bnz~Bn . 2(3b)
Here BE(n~, nz) is the quadratic term that controls the
fluctuation away from the optimum charge configuration
(njp, nzp) All fluc. tuation-dependent properties (such as
the transport properties) are thus periodic functions of n ~ p

and n2o. Consequently, the periodicity of the Coulomb
oscillations is unaffected by number Iluctuations. An
increase in number fluctuations due to the lowering of
the tunnel barriers may be thought of as a decrease of
the charging energies that enter BE(n~, n2). (Note that

G = 4GpP g Wp(n~, nz)
fl l, tl2

X f[BE'(n~, n2) —6E"(n~ —l, nq)],
(5a)

exp[ PBE*(—n), nz)]
Wp n~, n2

P„,„exp[ PBE*—(n ), n2) ]
'

f(E) = E/(1 — "),
(5b)

(5c)

where P = I/k~T and Gp = GAB = GEI;.
The right panel of Fig. 2 shows line shapes calculated

from Eqs. (1), (4), and (5). In order to obtain a consistent
set of fits, we first determine the parameters U; =
0.13 meV, U]2 = 0.009 meV, a;; = —0.20, and aI2 =
—3.12 from a fit of Eqs. (2) and (5) to the bottom
trace of the left panel of Fig. 2—which is the same as
the experimental (dotted) trace in the bottom panel of
Fig. 1(b)—where both dots are fully in the tunneling
regime. The upper curves are then obtained from Eqs. (5)
and (4), keeping the same values for U~, U~z, and a;J
while varying Uz with GBC, GoE according to Eq. (1).
As is evident from the theoretical curves, this procedure
yields a very good agreement with the experiments.

Reduction of the charging energy due to quantum fluc-
tuations has also been studied theoretically for the case of
large area tunnel junctions [5,19]. These studies are there-
fore not directly applicable to our few channel junctions.
It is nevertheless interesting to note that the renormaliza-
tion of the charging energy derived in those works cannot
explain the observed reduction of the charging energy in
our experiments: the processes discussed in Refs. [5,19]
only give a significant contribution when the conductance
is much larger than 2e2/h. This clearly does not apply to
our point-contact barriers.

In conclusion, we have performed and analyzed experi-
ments aimed at understanding the role of charge fluctua-
tions in the transport properties of quantum dots. We find
that the dependence of the charging energy of a quantum
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dot on the conductance of the point-contact tunnel barriers
can be well described using a scaling equation. It would
be useful to verify the validity of the scaling equation for
other power laws, which could be accomplished, e.g. , by
performing experiments in a high magnetic field, or by
varying only one of the tunnel barriers.
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