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Finite- Temperature Fermi-Edge Singularity in Tunneling Studied
Using Random Telegraph Signals
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We show that random telegraph signals in metal-oxide-silicon transistors at millikelvin temperatures
provide a powerful means of investigating tunneling between a two-dimensional electron gas and a
single defect state. The tunneling rate shows a peak when the defect level lines up with the Fermi
energy, in excellent agreement with theory of the Fermi-edge singularity at hnite temperature. This
theory also indicates that defect levels are the origin of the dissipative two-state systems observed
previously in similar devices.

PACS numbers: 71.55.—i, 72.70.+m

In small electrical devices, noise signals are often seen
which reAect the transitions of a single atom or elec-
tron between two or more metastable states. These "ran-
dom telegraph signals" (RTSs) [1],where the conductance
jumps randomly in time between certain discrete values,
are being increasingly exploited as a means of investigat-
ing a diverse range of tunneling phenomena, such as dissi-
pative tunneling of two-state systems [2], electromigration
[3], hopping conduction [4], and tunneling between quan-
tum Hall edge channels [5]. In the present work we use
them for the first time to study the dynamics of electrons
tunneling between a defect state and a two-dimensional
electron gas (2DEG) at millikelvin temperatures. We find
that a noninteracting electron picture cannot explain the
behavior of the system. This is not very surprising, be-
cause the interaction phenomena of the Coulomb blockade
[6] and the Kondo effect [7] are known to strongly influ-
ence the tunnel conductance through a single defect level
[8,9] or a quantum dot [10]. However, what is surprising
is that the dominant interaction effect in the present sys-
tem is another, to which attention has only recently been
drawn [11]. It is the interaction of the 2D gas electrons
with the defect potential which produces a peak in the tun-

neling rates near the Fermi level at low temperature T. At
T = 0 this peak becomes a Fermi-edge singularity, whose
origin is the same as that of the x-ray absorption edge sin-
gularity in metals [12].

This singularity has already been invoked to explain
sharp peaks observed in the current-voltage characteristics
of resonant tunneling diodes [9], but the interpretation in
that situation was hampered by the lack of equilibrium
due to the large voltage bias, and by the simultaneous
presence of other anomalous structures in the device
characteristics. In our RTS experiments we can measure
the tunneling rates for an isolated defect directly and in
thermal equilibrium. We find excellent agreement with
the theory for the finite temperature generalization of
the Fermi-edge singularity, which has not been tested
experimentally before. Using the same theory we are then
able to attribute the weakly coupled dissipative two-state
systems observed previously [13] in similar devices to an

electron tunneling between a defect level and a bound
state of the defect potential. We also find that the effects
of a magnetic field 8 on an RTS are fully consistent with
the electron-trapping defect scenario.

The measurements were made on two-terminal Si
metal-oxide-semiconductor field-effect transistors (MOS-
FETs) with highly doped contact regions, oxide thickness
d„= 240 A, and channel dimensions 0.6 or 0.8 p, m.
Care was taken not to stress the devices electrically, and
the threshold gate voltage was about 2.0 V in a dilu-
tion refrigerator at 100 mK. The resistance was sampled
at up to 5 kHz using a standard constant-current lock-
in technique with a Brookdeal 5004 ultralow noise volt-
age preamplifier. The low-temperature peak mobility was
around 0.2 m V ' s ', corresponding to a transport scat-
tering length l —300 A. This rather high disorder leads
to quantum interference effects (see later) which fortu-
itously make the RTSs big enough to allow the use of
signal levels not significantly larger than kT/e (to avoid
resistive heating) down to 100 mK. The mean time spent
in each resistance state of an RTS under fixed conditions
was found by averaging over several hundred transitions,
giving a standard error of a few percent.

Previous work at T ~ 4.2 K has shown that most RTSs
in n-channel MOSFETs result from defect levels situated
in the oxide close to the Si/SiOq interface [1]. Figure 1(a)
shows a schematic band diagram illustrating the situation
at low T, together with a section of a typical RTS. A
positive voltage Vg is applied to the gate, sufficient to
create a degenerate 2DEG, represented by the shaded area
at the interface. Ed is a defect level (indicated as being
in the oxide, though its location is not important here), EF
is the Fermi level, and Fo is the bottom of the lowest 2D
subband. We denote the conductance of the device with
the defect level empty (state 1) or occupied (state 2) by G~
or G2, respectively, and the reciprocals of the mean times
spent in the two states by rates y& and y2, as indicated in
the figure. The ratio of these rates satisfies the detailed
balance condition,

yi/y2 = exp[ —(Ed —EF)/&T]
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y2 follow them rather well; hence the picture of tunneling
without interactions seems to suffice. However, when T
is reduced to 0.5 K a distinct peak appears in the rates in
the region of Ed = EF. To account for this peak, which
occurs to some degree for every RTS, we are forced to go
beyond the noninteracting picture. Matveev and Larkin
[11] have recently pointed out that one should take into
account the consequences of the change in the defect
potential seen by electrons in the 2DEG when an electron
tunnels. Most of the relevant theory was developed in the
context of the x-ray absorption edge [12], and at T = 0 it
predicts a power-law singularity in the transition rate,

yi —0(EF —Ed) (EF —Ed)
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where 0(E) is the unit step function. The singularity
arises because the tunneling electron can easily lose a
small amount of energy to low-energy electron-hole pairs
which are created by the sudden change in the defect
potential. The finite temperature generalization of Eq. (4)
is [14]
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FIG. 1. (a) Schematic band diagram of a MOSFET at low
temperature, and a section of a typica1 RTS seen in such a
device. (b) Gate-voltage dependence of the capture rate y~
(filled circles) and emission rate y2 (empty circles) for RTS 1 at
1.2 and 0.5 K, with B = 0.28 T. The device conductance was
2 mS. The solid lines are fits by Eqs. (1)—(3), which neglect
interactions.

The lower graphs in Fig. 1(b) show ln(yi/y2) plotted
against Vg at two temperatures. The variation is almost
linear, implying that

Ed —EF = —ge(Vs —Usp), (2)
where il (the "sensitivity") and Vgp (the "balance" gate
voltage) are constants. The straight solid lines in the
figure correspond to g = 0.019 and V~o = 6.662 V. The
linearity results from the energy-independent density of
states in the inversion layer and the linear sensitivities of
Ed and Ep to the oxide electric field over the relevant
range of Vg. Differences in g between individual RTSs
can be attributed to different defect locations. The
deduced values of Ed —EF for RTS 1 are plotted along
the top axes in Fig. 1(b).

In a noninteracting picture the individual rates, deduced
from the golden rule, are given by

yi = (27r/R)DA f(Ed),
y2 = (27r/@)D& [I —f(Ed)], (3)

where f(E) is the Fermi function, D is the electron
density of states, and 6 is the tunneling matrix element.
The lines on the upper graphs in Fig. 1(b) are plots of
Eqs. (3), where (2'/R)DA = 280 s ' is the only fitting
parameter. At T = 1.2 K the measured values of y~ and
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FIG. 2. Energy dependence of (a) capture and (b) emission
rates for RTS2 at 145 mK (filled circles) and 360 mK (empty
circles) at B = 0.06 T. The solid lines are fits by Eq. (5) (see
text).

EF —Ed l
CT exp

2kT )
~I [n/2 + i(Ed —EF)/2rrkT j'

I'(n) (5)

where C is a constant and n is equal to the zero-
temperature exponent. Figure 2 shows the transition rates
for RTS 2, found in the same device as RTS 1 at lower
gate voltage (Vgp = 3.0863 V and rl = 0.018). The solid
lines are the result of fitting by Eq. (5), yielding n =
0.21 ~ 0.01 and C = 10.2 ~ 0.2 s ' (with T in degrees
kelvin). The very good fit at both T = 145 and 360 mK
is convincing evidence that these measurements directly
probe the Fermi-edge singularity at finite temperature.
The behavior of other RTSs was completely consistent
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with the same theory, although none could be measured
as accurately as RTS 2.

In the theory, o. depends only on the defect potential.
For simplicity, let us assume the potential before capture,
U, is attractive and radially symmetric, while the potential
after capture is zero. The one-electron eigenstates can be
classified by the perpendicular component of the angular
momentum I = 0, ~1, ~2, . . ., together with spin and
valley indices. In the 2DEG at B = 0 there are two
equivalent conduction band valleys, and for convenience
we combine the spin and valley into a single index s =
1, . . . , 4. If the phase shift for channel (m, s) at EF in the
presence of V is 6 „then n is given by [15]

(6)

Note that if U = 0, 6, = 0 for all m and s, n = 1,
and with the correct value of C Eq. (5) reduces to the
noninteracting result, Eq. (3). Charge neutrality forces
the phase shifts to obey the Friedel sum rule [16],

, 6„, , = ~, and we can use this together with Eq. (6)
to obtain a lower limit on n. This limit is reached for
pure s-wave scattering, when 6„, , = 0 for all I 4 0. In
2D an attractive potential always has a bound state. When
screening is strong, i.e., for large EJ;, the bound state may
be occupied by four electrons simultaneously [17], and
one finds n ~ 3/4. For weaker screening (small EF) the
bound state is occupied by only one electron and one finds
n ~ 0. The limit n = 0 is reached when the electron
tunnels directly to the defect level from the bound state,
while all extended states remain completely unaffected;
i.e., all the screening is done by the single electron in the
bound state. Then 6,„,is zero for all channels except the
one in which the bound state was destroyed, whose phase
shift is 60 i

——~.
The value o. = 0.21 obtained for RTS 2 is only con-

sistent with a singly occupied bound state, with ~/2 (
6o i ( ~ and fairly small phase shifts in other channels.
On the other hand, the values o. —0.7 and 0.9 for RTSs 1

and 3, respectively, allow the possibility of multiple occu-
pancy of the bound state. At this point it is interesting
to reconsider the results of some earlier RTS experiments
in MOSFETs [13,18]. In Ref. [13] the data were fitted
using an expression identical in form to Eq. (5) but de-
rived from the theory of two-state systems (TSSs). This
remarkable identity is in fact no coincidence, because an
electron tunneling between a defect level and a single
bound state in the defect potential constitutes a TSS. If
one could vary n from 0 to 1 one could, in principle,
transform the system continuously from a noninteracting
TSS into a noninteracting defect level. While the defects
in the present work are in the intermediate regime, those
in Ref. [13] were found to have n «1, corresponding
to TSSs very weakly coupled to the environment (the
2DEG). In this limit Eq. (5) takes the dramatically dif-
ferent form of a narrow Lorentzian centered at Ed = EJ:.

We suggest that for such defects, which are seen only in
electrically stressed devices, the 2DEG is locally depleted
out due to potential fluctuations at the interface. The ex-
tended states therefore remain unaffected on electron cap-
ture from the bound state because they are distant from
the defect- and bound-state systems. For these defects we
can also offer a resolution of a paradox that would arise
if the defect were located in a metallic region, namely,
that a small value of n implies very weak scattering of
electrons at EF, while a large RTS amplitude appears to
require strong scattering. If the defect actually lies in a
depleted region then electrons at EF may be able to tun-
nel across this region via the bound state when the defect
is ionized. Hence the conductance decreases by as much
as e /h when the defect captures an electron, because the
bound state is destroyed, even though all extended-state
wave functions are unaltered.

Finally, we examine the effects of a magnetic field
on another RTS, RTS 3 (seen in a different device
from RTS 1), which lend further support to the basic
picture of electrons tunneling between a defect and the
2DEG. For RTS 3, n —0.9, so the deviations from
the noninteracting result, Eq. (3), are small. In Fig. 3,
trace (i) shows the variations of G~ and G2 up to
12 T. They are almost identical and were measured
separately by sweeping the magnetic held while sampling
the conductance at 1 kHz so that the evolution of both
levels of the RTS could be seen simultaneously, as
illustrated by the sample of such a sweep shown in the
inset. The edge of a quantum Hall plateau is visible
at the highest field, while only universal conductance
fiuctuations [19] can be seen at lower B Trace (ii).
shows the corresponding variation of U~o, which above
about 4 T undergoes oscillations commensurate with the
vertical dotted lines marking points at which n Landau
levels are full. This confirms our expectation that the
tunneling process should be sensitive to the modulations
of the density of states in the 2DEG, although the nature
of this sensitivity is complex and will be the subject of
future work.

Trace (iii) shows G~ —G, where G is the smooth
monotonic background decrease of Gi and G2 visible in
trace (i). Trace (iv) shows the RTS amplitude 6Gq~ =
G2 —Gi over the same field range. As can be seen, the
fluctuations in 6G2& and G& —G are qualitatively similar
and exhibit virtually the same correlation length B, [19]. .

In the range 0 ~ B ( 5 T we find B, = 0.04 ~ 0.01 T,
giving an estimate of A@ = (B,e/h) ' = 0.1 p, m for
the typical phase-coherent area, compared with the device
area A —0.5 p, m . The rms amplitude of the fluctuations
is ~~ = 10 ~ 1 pS for Gi and o2i = 3.6 0.4 pS for
BG2~. Hence o2~/o ~

—0.36 ~ 0.06. Allowing for the
uncertainties in A and A@, this is consistent with the quan-
tum interference prediction o2~/o. ~

—(A~/A)' —0.45
for the effect of removing a single strong scatterer f'rom

a disordered 2D system [2,20]. Trace (iv) also contains
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FIG. 3. Effects of magnetic field on RTS 3 at 100 mK, for
which tt = 0.007 at B = 0. Trace (i) (left axis), conductance
G~ in state 1 of the RTS. Trace (ii) (right axis), balance gate
voltage V~o, showing oscillations commensurate with Landau
level index n. Inset, sweep of magnetic field over a small
range at high bandwidth, where both levels of the RTS are
visible. Traces (iii) and (iv), variation of AG~ and BG~2 over
the full field range.

what may be the first evidence for the classical effect of
removing a scatterer. Classically one would expect the
conductance to increase by approximately a fraction I/N;,
where ¹ is the total number of scatterers. This may be
estimated by assuming that the cross section of each scat-
terer is the Fermi wavelength AF, giving N, —A/AFI—
0.5 p, m /(15 nm X 30 nm) —1000. The dashed line
superimposed on trace (iv) was obtained by smoothing
6G2~ over a range of 2 T. Notice that it is always above
zero: After averaging away the quantum interference fIuc-
tuations, the conductance of the occupied state, G2, is
greater than that of the empty state, G&, by around 1 p, S.
This is indeed of the order of 1000 times smaller than the
total conductance G~.

In conclusion, using random telegraph signals we have
shown that electronic tunneling between a defect level
and a 2DEG exhibits the finite-temperature counterpart of
the Fermi-edge singularity, with exponent cv ranging from
nearly zero to nearly 1. Defects with very small values of
n behave as two-state systems. We also report magnetic
field measurements that support our findings.
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