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We consider the nonequilibrium steady states of a driven charge density wave in the presence of
impurities and noise. In three dimensions at strong drive, a dynamical phase transition into a temporally

periodic state with quasi—long-range translational order is predicted.

In two dimensions, impurity

induced phase slips are argued to destroy the “moving solid” phase. Implications for narrow band noise
measurements and relevance to other driven periodic media, e.g., vortex lattices, are discussed.

PACS numbers: 71.45.Lr, 72.70.4+m, 74.60.Ge

The influence of quenched impurities on a periodic
medium can lead to very rich physics. Examples include
charge density wave (CDW) systems [1] and the mixed
state of type II superconductors [2] in which the vortices
form a periodic lattice. In both these cases it has been
argued that the impurities ultimately destroy the long-
ranged periodicity, and pin the periodic medium. How-
ever, with an applied force, provided by an electric field
or current, the periodic structure depins and becomes mo-
bile. Once in motion, the impurities are less effective at
destroying the periodicity [3]. Indeed, recent experiments
have shown evidence for a first order melting transition of
the moving vortex lattice [4]. Vinokur and Koshelev have
interpreted the data on NbSe2, in terms of a true nonequi-
librium phase transition, from a moving liquid phase to a
“moving solid phase” [5].

This experiment raises a number of questions about the
nonequilibrium steady states of such noisy driven systems
with impurities. The most basic concerns the very
existence of a moving solid phase. A solid in equilibrium
is usually characterized by the presence of long-ranged
crystalline correlations (Bragg peaks). But other criteria
also suffice, such as the presence of a nonzero shear
modulus or the absence of unbound dislocation loops.
Under what circumstances, if any, is it possible to have
a true moving solid, separate from a driven liquid with
plastic flow? If the moving solid phase is possible, what
are its characteristics and experimental signatures?

In this Letter we attempt to answer these questions, fo-
cusing for simplicity on the CDW. Many of our conclu-
sions, however, apply also to the driven vortex lattice. In
2D, we find that a moving solid phase driven through im-
purities is always unstable to a proliferation of disloca-
tions. The system becomes equivalent (in symmetry) to
a driven liquid. In 3D, a moving solid phase appears to
be stable at large velocities, as illustrated in the schematic
phase diagram (Fig. 1). However, the solid phase does not
have true long-ranged positional correlations (LRO) as in
an equilibrium (3D) crystal. Rather, algebraic power law
positional correlations are predicted as in a 2D equilibrium
crystal. Likewise, unbound dislocation loops are absent in
the moving solid. Despite the absence of spatial LRO, the
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moving solid phase is periodic in time—and hence has
long-ranged temporal correlations. The experimental sig-
nature of such a periodic state is narrow band noise (NBN)
at the “washboard” frequency [16].

Upon inclusion of thermal effects or phase slips, the
CDW depinning transition [7] is predicted to be rounded
[8], becoming a crossover (see Fig. 1). For electric fields
E above this crossover, the CDW is in a plastic flow
regime. With increasing E, we predict a true phase
transition into a temporally periodic moving solid phase.
For the CDW, this dynamical transition is likely to be
continuous. As shown below, scaling arguments then
predict NBN characteristics near the transition. The phase
diagram for the driven vortex lattice should be similar,
with current replacing electric field. However, in this case
the transition into the moving solid phase is likely to be
first order, at least in the large current limit.

Charge density waves tend to form in very anisotropic
metals, consisting of weakly coupled metallic chains
[1]. The electronic density in a CDW has a periodic
modulation along the chain (x) direction:

p(x) = py + Reye'2 (1)

with kr the in-chain Fermi wave vector. Long-ranged
order of the CDW is manifest in the complex order
parameter field, (x) = p;e'®.

In the absence of impurities and an applied electric
field, the CDW exhibits long-ranged order in the pair
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FIG. 1. Schematic phase diagram for the three-dimensional

CDW. Hashed lines indicate (possible sharp) crossovers.
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correlation function

G(x) = (" (x, )¢ (0,1), 2
with G(x — ) # 0. Here the subscript ¢ denotes a
time average. Lee and Rice have argued that quenched
impurities destroy the LRO of G for physical dimensions
d <4 [9]. However, when the CDW is driven and
moving, the Lee-Rice argument is not valid, and LRO of
G is not precluded (but see below).
In the moving nonequilibrium steady state, temporal
correlations in ¢ also serve to characterize the CDW
order. Consider the pair correlation function

C@t) = (Y (x, )¢(x,0))., 3)
where the subscript x denotes a spatial average. Tempo-
ral LRO is signaled by a periodic, and nondecaying, be-
havior, C(¢t + t9) = C(t), with 1y the washboard period.
Middleton has shown that for a large class of dynami-
cal models, which exclude phase slip and thermal noise,
the steady state is (microscopically) periodic [10]. With
noise, microscopic periodicity is destroyed, but the statis-
tical correlation function C(¢) is still periodic. However,
when phase slip is allowed, the robustness of the periodic
state is much less clear, as we discuss below.

To proceed, we assume local CDW order and construct
a description in terms of . In the absence of phase slips,
which we consider first, amplitude fluctuations can be
ignored, and the dynamics involves the phase field ¢. A
common starting point is the Fukuyama-Lee-Rice (FLR)
model [11] with equation of motion

9, = DV*¢ + V(x) sinQkpx + ) + vo2kp. (4)

The spatial coordinates transverse to the chains have been
rescaled to give an isotropic diffusion constant D = Tv%-,
with scattering time 7 and Fermi velocity vp. The
second term on the right side represents the effect of
quenched random impurities. The last term is present
in an applied electric field E, with “bare” velocity vy =
(er/m)E. This term can be shifted away, ¢ — ¢ +
vo2krt, reducing the FLR equation to an equilibrium form
;¢ = —8H /8 ¢ with (time-dependent) Hamiltonian H.
However, there are additional terms that can, and should,
be added to FLR which are manifestly nonequilibrium.

The most important such term is o d,¢, allowed by
symmetry once the CDW is in motion along the x
direction. Assuming dissipation occurs independently for
each electron, it arises simply from replacing 9, by the
convective derivative D, = 9, — vd,, where v is the
actual CDW velocity, so o = v.

In general, there are other missing terms, for example,
of the Kardar-Parisi-Zhang form (9, ¢)? [12]. This term,
involving more gradients and powers of ¢, is less relevant
than d,¢. In the following we drop this term, although it
can play an important role [13].

To study the properties of the moving state, it is
appropriate to use a coarse-grained (in space and time)
equation of motion. It is tempting to argue that the
impurity term V(x), oscillatory after shifting ¢ — ¢ +

v2krt, will average to zero at long times. However, as
pointed out in Refs. [8,14], it is not legitimate to ignore
completely the effect of impurities which modify the local
mobility w of the phase field. (This can be seen explicitly
via a high velocity expansion.) The random V term
can then be replaced by & u(x)E2ky = F(x), where Su
denotes the fluctuating part of the mobility. We take F
Gaussian with F = 0 and F(x)F(0) = g&(x).
We thereby arrive at a generalization of FLR,

d;p = DV?p + v2kp + 0d p + F(x) + n(x,1),
5)

where the true velocity v is reduced from v at finite E
by impurity drag. The stochastic noise term is assumed
to be Gaussian with (n) = 0 and (n(x,)n(x,t')) =
kgT8(x — x')8(t — /). Although o = v, we will con-
sider it as an independent parameter to emphasize the role
of convective effects.

Finally, we modify the model to allow for phase slip.
One way to incorporate phase slip is to put the model on
a lattice and replace d,¢p — a ! sin[¢p(x + a) — $(x)],
etc. Alternatively, amplitude fluctuations can be included
using field . The appropriate soft-spin model, which
reduces to Eq. (5) in the spin-wave limit, is

i =[DV? + 0a, + M + r(x) + iwg + iF(x)]y
— uplp)? + £(x,1), (6)

with the definition wg = v2kr. Here M is a “mass"
term which controls the magnitude of the order parameter,
and £(x, ) is a complex stochastic noise term. We have
also included a spatially random component to the mass,
denoted r(x), which we take to be a zero-mean Gaussian
random variable with r(x)r(0) = AS(x).

First, consider the system with phase slips suppressed.
In this spin-wave limit, Eq. (5) is linear in ¢ and can be
solved via Fourier transforms

F(p)
Dp? + iop;

n(p, w)
iw + Dp? + iop,’

where ¢ (1) = ¢(t) — wor. The first term in Eq. (7) rep-
resents a static distortion in ¢ (x), induced by the random
mobility, while the second gives “noisy” dynamical fluc-
tuations around this mean. The static phase variations di-
verge algebraically with system size L for d < 3, leading
to the (stretched) exponential decay of G(x). Thus even
without phase slips, a 2D driven CDW lacks translational
LRO. For the 3D case, Eq. (7) gives Gsw(x) ~ x~", cor-
responding to power law peaks in the static structure func-
tion and translational quasi-LRO (QLRO). Notice that the
presence of the nonzero o0 d,¢ term in Eq. (5) is critical
here. Indeed, for a driven periodic system with reflection
symmetry o = 0, Eq. (7) implies exponential decay of
G(x) for all d < 4. Because the disorder term in Eq. (7)
is static, the dynamical properties are determined by the
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thermal noise term, with Csw(w) ~ 6(w — wg) for all
d > 2, indicating temporal LRO of C(z). In 2D, spin
waves imply temporal QLRO for C(r).

We now address the stability of these spin-wave
results to phase slips. In equilibrium o0 = F = 0, Eq. (6)
describes an XY model with relaxational dynamics. In this
case the unbinding of topological defects (i.e., vortices)
coincides with the loss of translational LRO due to spin-
wave fluctuations. For d > 2, the vortices form d — 2
dimensional subspaces (lines in 3D). With a core energy
growing with size L as L¢"2, they are bound at low
temperatures. In equilibrium, 2D is marginal for both spin
waves, which give QLRO, and vortex unbinding. But
in the nonequilibrium case of interest, the unbinding of
phase slips and vortices needs to be readdressed.

For simplicity, consider first the case o = 0. Then
Eq. (5) can actually be cast into an equilibrium form,
9,0 = —8Ects/8d + m, with the proviso that the “en-
ergy,” Eor = [{D|IV$|?/2 — F ¢}, is a multivalued (i.e.,
nonperiodic) function of the phase.

It is clear that spin-wave conformations of the phase are
highly constrained. Imagine subdividing the system into
regions of linear size L. Each such region experiences
a net random torque [drF(r) of order +/gL4. The
torque in neighboring regions is generally different so
that the local phases are pushed at different rates. In the
absence of phase slips, however, all regions must rotate
synchronously or build up enormous strains. Eq. (7)
describes the resulting steady state in which the strains
increase to counteract the nonuniform applied torques.

Once phase slips are allowed, however, such a situation
is clearly metastable. If the net torque in a particular
region is positive, then the energy of the spin-wave state is
lowered simply by increasing all the phases in the region
L by 27r. This decreases the random energy but does not
alter the strain energy (which is now periodic in ¢). For
finite L and nonzero T, this process will, therefore, occur
with an activated rate 1/7 ~ exp(—U/kgT), where U is
the energy barrier for the phase slip process.

The energy U is estimated from the elastic energy mid-
way through the process, i.e., when there exist phase
shifts of order 7 on scale L. Adding the elastic and ran-
dom contributions to the energy gives U(L) ~ DL4™2 —
JgL4. A more microscopic picture is that of vortex nu-
cleation. The phase slip is achieved by nucleating a small
neutral topological defect (vortex-antivortex pair or vortex
loop in d = 2, 3) which expands and slips over the region.
The elastic contribution to the barrier energy is just the
binding potential of the defect, Verect (L) ~ DLY72, up to
possible InL dependence. For d > 4 and small g, U(L) is
positive. Moreover, since U(L) grows with L, large phase
slips are exponentially suppressed, indicating stability of
the spin-wave phase for d > 4. For d < 4, however,
U(L) becomes negative for L > L. ~ (D?/g)"/#~9) and
arbitrarily large unbound phase slip processes will pre-
sumably be nucleated. On scales much bigger than L.,
it is then inconsistent to assume a well defined average
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phase. The relaxation time for the phase slips on scale L,
is 7. ~ exp[DL?"2/kpT]. Beyond this time scale, phases
separated by distance that is large compared to L. will be-
come dephased, destroying the temporal LRO.

For o # 0, the argument is trickier. First, transform
to the moving frame via x — x — o, which removes the
0d,¢ term in Eq. (5). The elastic force is invariant under
such a transformation, but F(r) — F(x — ot,r ), so that
the random torque field appears to move with velocity
o. Again, dividing the system into regions of size L,
we see that a statistically uncorrelated realization of F
moves into a particular region in a time to = L/o. For
large L this decorrelation time #y is much smaller than
the typical diffusive time for phase changes ¢4 ~ L*/D.
Only on time scales longer than ¢4 can a phase change
take advantage of the random torques spread out over
the entire region. The random energy gained is thus
averaged over at least ¢4 /4 realizations of the torques,
leading to a net torque on the entire region of Fpe =
Vg/o L'@D/2 Assuming an equality here, the energy
balance is U(L) ~ DL?™2 — \/g/o L'““"V/2 and phase
slips proliferate for d << 3. Directly in d = 3, these naive
arguments suggest a transition between an ordered state
for v > v, (large o) and a disordered state for v < v,
with v, ~ o, ~ g/D>.

The above arguments are consistent with the spin-
wave calculations. As in equilibrium, they suggest that
vortex unbinding coincides with the loss of translational
LRO due to spin-wave variations. Further support for
this conclusion follows from an analysis of the soft spin
model, Eq. (6), which we now describe.

In the absence of randomness, the soft spin model con-
tains two phases for d = 2. Fluctuation effects near the
transition, negligible above d = 4, can be studied for
small € = 4 — d via the renormalization group (RG).
The RG, including r(x), has been studied in the con-
text of random—bond XY magnets [15]; we generalize this
calculation to include F in the dynamics. After trans-
forming ¢ — e'“*'y, we employ standard dynamical RG
methods. The resulting differential RG flow equations to
quadratic order are (for o = 0)

u = u(e — S5u + 6A),
A = A(e — 4u + 4A — 2g) + 247, (8)
g = gle —2g + 6A),

with & = du/d Inb, etc., where b = ef is the rescal-
ing factor. A simple analysis shows that the Gaussian
(u = A = g =0), pure (A = g = 0), and dirty equilib-
rium (g = 0) fixed points are all unstable, and, further,
that no other fixed points exist. Instead, the couplings
diverge as £ — oo. In particular, u — +% (not —=), so
the instability does not appear to indicate a fluctuation in-
duced first order transition. Instead, the strong divergence
of the disorder strengths g and A are consistent with the
scenario that the ordered phase is absent.
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For o # 0, changing to comoving coordinates
x — x — ot reduces Eq. (6) to the previous case but
with 7(x) — r(x — ot,x ) and F(x) — F(x — ot,x ).
Because z = 2 + O(e) at the pure XY fixed point, the
weaker x dependence of r and F may be ignored. Per-
turbations of the form r(—ot,x,)¢ and (F(—ot,x )
are strongly irrelevant near d = 4, consistent with the
spin-wave analysis and our earlier scaling arguments
which gave d = 3 as the lower critical dimension for the
ordered phase. To study d = 3 in the soft spin representa-
tion, we employ nonperturbative techniques. We therefore
consider a generalized model containing N complex fields
i, obeying Eq. (6) but with || — >, |¢4;1>. We analyze
the stability of the pure N = = fixed point to the random
perturbations. From scaling, the singular part of the mean
energy density varies as (2) = &V/77df(AE g £Y%),
where & ~ M~'/7 is the (pure) correlation length,
and yy and y, are the RG eigenvalues of A and g,
respectively. At N =, 1/v — d = —2. Differen-
tiation implies Ax = Ia(YDlag—0 ~ €272, A, =
(YD ag—0 ~ &2 These quantities are computed
at N = =, using saddle point techniques and the Martin-
Siggia-Rose dynamical formalism [16]. We find yp, =
d —5and y, =3 —d. [For o =0, y» =d — 4 and
yg = 4 — d, in agreement with the usual Harris criterion
and the € expansion, Eq. (8).] Thus for d < 3, the equi-
librium critical point is unstable to random F, consistent
with the absence of an ordered phase.

Our predictions for the 3D phase diagram are sum-
marized in Fig. 1. Upon lowering the temperature at
weak drive E, substantial CDW amplitude develops at the
mean-field transition temperature 7.9. At long distances
and times, however, both G(x) and C(¢) decay exponen-
tially to zero. With increasing drive, the CDW undergoes
a sharp nonequilibrium phase transition into an ordered
“periodic state” with spatial QLRO and temporal LRO.
Our arguments strongly suggest that for 2D CDW sys-
tems, the ordered phase is absent.

Experimentally, temporal LRO in the solid phase
manifests itself in NBN. Consider current fluctuations
in the presence of a fixed bias voltage; other setups
are qualitatively similar. The current density j(x) =
(en /m)d,d[1 + (p1/2kr) cosRkrx + ¢)], where n |
is the areal chain density. In a sample of cross-sectional
area A, the instantaneous CDW current through the plane
x =0 is Ix(t) = [,d*x,j(x = 0,x,,t). The oscilla-
tory part of the NBN correlator S(z) = (Ix(1)Ix(0)) is

S0 = 13 [ Refe (txi 0w < LD 9)

where Iy = en | w0/2\/§ kra. We consider this quantity
in the bulk, and expect that measured current fluctuations
(in the external leads) exhibit proportional behavior.
Temporal LRO in the solid phase, therefore, implies
a sharp (resolution limited) delta function peak in
S(w) ~ A2""25(w — wg). Deep in the liquid phase, ¢

correlations are short range in space and time, which gives
the mean-field result S(w) ~ AQ/[Q? + (0 — wo)?].
Near the transition field E.(T), provided the transition
is continuous, we expect a scaling form S+(w, §E) ~
[SEI“f+[(w — wo)/|SE|?”, A|SE|**], where 2z and

v are the dynamical and correlation length ex-
ponents, a is an additional scaling exponent, and
8E = E — E.. Matching to the infinite area limit

implies that the amplitude of the delta function fre-
quency peak for E > E. vanishes as |SE[¢T¢4FTz=m¥,
For E < E., the (generally non-Lorentzian) line shape
S(w) ~ AlSEI*T?s[(w — wo)/|SEI?*]. In 2D, S(w)
has an intrinsic width for all fields and temperatures.

Although the discussion has focused on CDWs, most of
the ideas employed here apply to more general periodic
media. Of particular current experimental interest are
vortex lattices and 2D Wigner crystals [17]. In all cases,
translational and temporal LRO may be destabilized by
both phonons (phase fluctuations) and topological defects
(phase slips). Provided reflection invariance is broken by
an external drive field, we expect linear gradient terms
(e.g., 0dx¢) in the equations of motion. Preliminary
investigation of driven lattices suggests that such terms
play a similar role in that case [13].
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