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Nonlinear Self-Sustained Drift-Wave Turbulence
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Numerical simulations of 3D collisional drift-wave turbulence in a sheared magnetic field are
presented which demonstrate that fluctuations are self-sustaining even though the linear eigenmodes
of the system are all damped. An analytic calculation reveals that the source of the turbulence is a
nonlinear streaming instability in which radial flows extract energy from the ambient density gradient
and drive drift waves which then amplify the radial flow.
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Energy confinement in tokamaks and other plasma fu-
sion experiments is always lower than can be explained by
transport by classical interparticle collisions. The source
of the anomalous transport has been attributed to mea-
sured fluctuations in the density and potential. Drift
waves and, in particular, the so-called universal mode
were for many years believed to be the source of these
fluctuations and transport. This idea was, however, dis-
counted after it was shown that magnetic. shear com-
pletely stabilizes the universal mode [1]and its collisional
counterpart [2]. Later it was shown that magnetic cur-
vature could destabilize drift waves in a toroidal plasma
[3]. On the other hand, there has never been any proof
that a nonlinear system of equations describing drift-wave
turbulence in a sheared magnetic field could not sustain
turbulence. Indeed, 2D simulations [4,5] indicated that
drift-wave turbulence could be nonlinearly self-sustaining.
In neither case was the nature of the nonlinear drive mech-
anism clear. That the nonlinear behavior of a 3D drift-
wave system differs greatly from the 2D case was recently
demonstrated by Biskamp and Zeiler [6] who showed that
nonlinearly driven convective cells (B V = 0) were re-
sponsible for extracting energy from plasma confined by a
straight, nonsheared magnetic field. In the unsheared case
collisional drift waves are always unstable so the question
of nonlinearly sustained turbulence in a 3D linearly stable
system was not addressed. In this paper we present 3D
simulations of drift-wave turbulence in a sheared mag-
netic field which demonstrate the persistence of turbu-
lence even in the absence of linear instability. We also
present a simple picture of the nature of the nonlinear
drive mechanism which is supported by analytic calcula-
tions and simulations.

In a magnetic field aligned coordinate system, in which
z lies along 8, the ambient density gradient is in the x
direction and the y direction is defined by 8 . Vy = 0,
the coupled equations for perturbations of the density n,
potential p, and parallel flow vz in a straight sheared
magnetic field are given by

de Vz+ + p (cp —n)+y ' =0, (I)
df

—7'„p+ (p —n) =0, (2)
~Z

dVz BOz + p
df

where T; = 0, T, is assumed to be a constant, and

(3)

—= —+zXVp V', (4)
df Bf

with p = p, /L~ and y = c, td/L, . The equations have
been normalized using the magnetic shear length I,
as the parallel scale length, the perpendicular length
L ~ = (v, L2 p 2/A, L, )

' t3, and the diamagnetic time scale
td = L„L~/p,c, In the absence of magnetic shear
the term proportional to z in (4) is absent. In these
normalized units n/no —etp/T, —v, /c, —L~/L„and
the transport scales like

D~ —L~/td —p, c,L~/L„. (5)

Small diffusive dissipation terms are added to each
equation to model ion viscosity and classical transport.
The ambient density gradient which has been absorbed
into the normalization of the variables-enters the equations
through the 8@/i)y term in (1). The energy equation
constructed from (1)—(3) yields

1

2
dx'(p'(V'~tp(' + n' + v,') =

—p'
2

dx — — dx n, (6)
Btl 3 Ac@

where the perpendicular dissipation terms are ignored.
While the parallel dissipation term on the right side of
the equation is negative, the remaining term, which arises
from the ambient density gradient, has no definite sign.
Thus nonlinear instability is not precluded.

In the simulations (1), (2), and (3) are stepped in time
with the 8 /i)z operators approximated with a second or-
der finite difference scheme and advanced implicitly. Pe-
riodic boundary conditions are imposed in the transverse
directions with convection terms treated either with a
fourth-order, finite difference, or a pseudospectral scheme.
In the z direction the system is split into modules of length
2~. This is necessary because the flux tube coordinate
system becomes increasingly distorted with respect to the
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physical system as z becomes large and structures in the
physical system can no longer be correctly resolved. The
solutions at the g boundaries of each module are mapped
to the adjacent module by untwisting them and retwisting
them to match the adjacent module. The grid consists of
up to 128 X 128 X 90 cells.

If the simulations are initialized by applying small, ran-
dom perturbations of n and p, the fluctuations die away
since there is no linear instability. To facilitate the growth
of the turbulence to finite amplitude, we include magnetic
curvature in Eqs. (1) and (2) [7,8], which gives rise to
linear drift-ballooning instability similar to the Raleigh-
Taylor instability of a system with a gravitational field act-
ing on a neutral fluid. Shown in Fig. 1 is the total energy
versus time from a simulation with L~ = 9.8, L~ = 10.2,
L, = 18.9, and p = 0.79. The parameters correspond to
a regime where the diamagnetic frequency exceeds the
local interchange growth rate and the ballooning effect
is weak. At t = 666 we turned off the magnetic cur-
vature, so that the equations reduced to (1)—(3) above,
making the system linearly stable. Nevertheless, the tur-
bulence remains at a quasisteady finite level. Figure 2
shows a typical density perturbation in the x-y plane from
the same simulation. The important question is why the
nonlinear equations produce finite fluctuations and trans-
port even though all modes are linearly stable. A clue
comes from the occasional appearance of regions of in-
tense transport, where radially extended flows v - form,
strengthen, and then break up. %'e show now that the tur-
bulence results from the nonlinear amplification of these
x-directed flows. Figure 3 illustrates the physical mecha-
nism. The flow v, (y) convects the ambient density up and
down the density gradient and therefore produces the den-
sity perturbation no(y), Fig. 3(a). When this density per-
turbation becomes sufficiently large, it destabilizes drift
waves with k ~ k~, and finite k, . These drift waves are
not stabilized by magnetic shear because their wave vec-
tor is essentially oriented in the g-x plane and the mag-
netic shear acts primarily on disturbances with large k&, .
The growing potential perturbation of this drift wave is 55m! I I II ! 4!!I
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shown in Fig. 3(b). The potential perturbations of the
drift-wave amplify the original x-directed flows shown in
Fig. 3(a). The mechanism shown in Fig. 3(c) is basically
the vortex peeling process presented previously for the
self-generation of sheared poloidal rotation [9]. Thus the
entire process is self-amplifying and is apparently insensi-
tive to the magnetic shear.

To estimate the growth of this streaming instability we
present a simple analytical model which describes the
nonlinear interaction of a truncated set of modes. For
simplicity, the calculation is carried out in an unsheared
system, although magnetic shear should not alter the
qualitative picture. Previous investigations of sheared
flow generation focused on how stable vortices [9] or
drift waves [10) interacted to drive sheared flow. We
extend this approach by allowing the drift waves to
be self-consistently amplified by self-generated gradients.
The flows are described by three interacting potential
perturb ations

0 = cocos(cry) + (@~ cosvry + $2sin2m. y)

X sink, g exp(ik, x),
where @o describes the radial sheared flow and @~ and

@2 are drift waves whose phase in y has been chosen so
that they interact to drive @o. The mode P2, which has
a shorter wavelength, is taken to be damped by perpen-
dicular viscosity. We take k~ && k~ —1 so that the two
drift waves essentially propagate along x due to the den-
sity gradient Bn/By as shown in Fig. 3, i.e. , the configur-
atio is rotated by ~/2 compared with a conventional drift
wave. At the same time the sheared flow which is gen-
erated is radial rather than poloidal, and this flow drives
the nonlinear instability. The corresponding density per-
turbations are similar to those of @ with the exception of
no(y), which is driven by the radial convection (BPp/By)
of the initial ambient density gradient. The drift waves
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FIG. 1. The total energy versus time from a simulation with
magnetic shear including magnetic curvature for t ~ 666.

I IG. 2. A grey scale plot of n perpendicular to 8 with light
shading corresponding to high density.
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FIG. 3. Physical mechanism of the nonlinear instability.

growing on the local gradient npy
——Bnp/'By grow most

strongly on the steepest part of the gradient. The result-
ing quasilinear flattening of the density profile evens the
gradient, forcing np(y) to take on a triangular shape with

np, , being piecewise constant, i.e., npy is a positive (neg-
ative) constant between (outside) the vertical IIow lines
in Fig. 3(a). To evaluate the time dependence of npy we
take the y derivative of (1) and average over z, x, and the

y interval ( —1/2, 1/2), which yields

Bn(]y/Bt —2~go, (8)
with nay a piecewise constant. Note that the average
eliminates both the convective transport and compression
terms in (1). The remaining interactions between the
modes can be evaluated without further approximation.
The final equations are

B4]/» + 71(@] —n]) + A]@op@] = o, (9)

Bnl/Bt + yl k J ] p (n] @]) + Aln (t on]
—ik. noy @] ——0, (10)

B 4o/B t = Ao I @]I'4o, (11)

(l 2)

Bnpy/Bt 277 y] n(jy
„ &/4 &/4

(14)

with the algebraically growing solution no, ,
—t

To test this picture of nonlinear instability, we have
performed 3D simulations of drift-wave turbulence in the
case of no magnetic shear. The system is initialized
with np(y) of the lowest order mode of the system of
sufficiently large amplitude to locally drive drift-wave
turbulence. The parameters of the simulation are L
18, Ly = 36, L, = 72, and p = 1.0. In the nonlinear
instability the extraction of energy from the ambient
gradient arises from the k, = 0 component of v in
contrast with the usual linear drift-wave theory where k, is
finite. To focus on the nonlinear instability, we artificially
eliminate k, 4 0 components of the Bp/By drive term in
the continuity equation, which makes the system linearly
stable. In Fig. 4 time traces of the energy in all modes
(thick solid), k, = 0 modes (short-dashed), and k, 4 0
modes (long-dashed) are shown. At around t = 25 the
modes with k, 4 0 (drift waves) grow strongly at the
expense of k, = 0[no(y)]. After this initial transient, all
of the energies begin to grow steadily with no apparent
saturation. A 2D slice of the potential during this later
phase is shown in Fig. 5. The large scale radial flow
v p(y) dominates. This fiow has been amplified from
noise. Time sequences of such plots (not shown) reveal
that the peeling of the drift-wave vortices is the dominant
mechanism for amplifying the radial flow at late time.
The corresponding 2D plots of the density are similar
and reveal that np(y) has also been amplified during the
simulation. Finally, the thin solid curve in Fig. 4 is the
time history of the energy with the usual linear drift-wave
drive included. The qualitative features are similar. Thus

where y] = k, /kz], k~; = k„+k,.;, Ap ——k, (k~2—2 2 2 2 2 2

kJ ]) (kJ ] kgp) 8kJ2v2@, A]@ = Ap27r /kJ ], A]~
k 7r /4vq„, and v2„and v2~ are the damping rates of
n2 and (t]q. In the absence of radial fiow, (9) and (10)
are linear, yielding the local dispersion relation for the
complex growth rate y,

yl 1+ kL1P + 7 2
= —ik. no

l k,' )
of drift waves driven unstable by no, An initial small
radial fiow Pp increases npy in (8). The drift waves
described by (9) and (10) go unstable, amplifying (t](& in

(11), which then further increases npy. As Pp grows, the
shear fiow damping terms in (9) and (10), proportional to
Pp, become important and the system evolves in such a
way that the drift waves remain near marginal stability,
the drive due to npy balancing the damping due to (t]o.
The balance gives (assuming Rey = 0)

~x &Oy +1

(A]y + A]„)(A]„A]@)]t2
Inserting this result into (8) yields a nonlinear evolution
equation for noy,
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FIG. 4. Energy versus time from a simulation with no
magnetic shear.

the usual linear drift-wave instability plays no significant
role in the nonlinear evolution of the system.

The next issue is whether the nonlinear instability just
described underlies the dynamics of sustained turbulence
observed in the presence of magnetic shear. At the
qualitative level, regions where the transport occasionally
becomes very large exhibit radially extended flows. The
analytic calculation is almost unchanged when magnetic
shear is included. There is no exact k, = 0 mode in a
sheared magnetic field. A radial How at some location
along the Aux tube in a sheared magnetic field twists in
the x-y plane and is compressed in the x direction as
it projects down the Ilux tube [11]. As a consequence,
radial Rows are localized in the z direction and develop
a finite k, and the associated damping which must be
overcome by the nonlinear drive. A crucial test of the
physical picture of the nonlinear instability mechanism

is that the source of energy of density fluctuations is
k, —0 modes rather than finite k, modes as would be
expected from a traditional linear drift wave model. A
spectral analysis of Eq. (I) as carried out in Ref. [6]
reveals that the source of energy is indeed the longest
wavelength (small k, ) density disturbances in the system.
The primary reason that the nonlinear instability remains
robust in a sheared magnetic field is that the drift waves
driven by no(y) are not stabilized by magnetic shear
because these modes have k~ && k~ and k is not affected
by magnetic shear, i.e. , magnetic shear drops out of (1)
and (2) if lc, = 0. The fundamental difference between
a sheared and nonsheared system is therefore not the
mechanism which drives the turbulence but the saturation
mechanism. In the unsheared magnetic field the energy
runs away as the radial Aows continue to amplify, while
in a sheared system the radial flows always break up
as a result of Kelvin-Helmholtz instability, leading to a
saturated nonlinear state.

In conclusion, we have found that the drift-wave
turbulence in a plasma confined by a magnetic field
is driven by a nonlinear streaming instability. This
instability is essentially independent of the magnetic
shear. While the present results are based on a collisional
description of drift waves, the basic mechanism for
the nonlinear instability presented in Fig. 3 does not
depend on the collisionality of the system. Collisionless
drift waves would grow on the density gradient no, ,

and then reinforce the radial sheared Row. Thus it
seems possible that the core confinement region of a
tokamak would also be subject to nonlinear instability,
and this mechanism would compete with trapped particle
instabilities in driving transport.
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FIG. 5. A grey scale of P perpendicular to 8 illustrating the
development of the radial How.
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