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Unified Theory of Stimulated Raman Scattering and Two-Plasmon Decay
in Inhomogeneous Plasmas: High Frequency Hybrid Instability
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The theories of stimulated Raman scattering (SRS) and two-plasmon decay (2'„,) in inhomogeneous
plasmas have been unified by adopting a powerful new variational approach. We call this technique the
minimum pump strength principle (MPSP), and the unified process, the high frequency hybrid instability
(HFHI). The growth rate and frequency shift of the most unstable mode of HFHI are shown to match
smoothly onto the two known limiting cases: 2'~, at large k, and SRS backscattering as k goes to zero.
The effectiveness of this method has allowed the generalization of the density inhomogeneity treated
from a constant gradient to any positive-integer power law. Potential experimental signatures of HFHI
modes are described.

PACS numbers: 52.35.Mw, 52.35.Nx

The theory of three-wave parametric instabilities [1] in
inhomogeneous plasmas has been heavily dependent on
eikonal approximations [2], ab initio local expansions [3],
and the WKB quantization condition [4]. While very sig-
nificant results have been obtained to date [5,6], many
problems remain unsolved because these techniques are
not sufficient to tackle them. In particular, whenever the
instability occurs near the turning points of the waves,
the eikonal approximation ceases to be valid, and, when-
ever the description of the problem is not reducible to a
second order ordinary differential equation, WKB quanti-
zation conditions are not readily available. Ab initio local
expansion techniques are not generally applicable because
they rely on the reducibility of the problem to one of a
very few available canonical models, typically the har-
monic oscillator, whose eigenvalue condition is already
known. In this Letter, we address the theory of high fre-
quency parametric instabilities that occur near the quarter
critical density of a laser-produced plasma, using a vari-
ational approach that circumvents these difficulties [7].
This same technique should prove useful in tackling other
outstanding problems in the theory of parametric instabili-
ties in inhomogeneous plasmas, especially in the presence
of more than one perfect phase matching point, in mul-
tiple dimensions, and in the presence of magnetic fields
and other anisotropies. The technique is based on the ob-
servation that the most unstable mode, or ground state, in
the bound spectrum of a given parametric instability will
require the minimum amount of pump power to be ex-
cited, hence the name minimum pump strength principle
(MPSP).

In this Letter, we solve for the most unstable high fre-
quency mode at the quarter critical density when the k vec-
tor of one of the two daughter waves goes to zero (or is
very near its turning point). When the polarization of that
daughter wave is assumed to be strictly electrostatic (longi-
tudinal), with the pump being electromagnetic (transverse)
and the large k daughter wave electrostatic as well, the

instability is called two-plasmon decay (2'„,) [8,9]. If,
instead, it is strictly electromagnetic we have stimulated
Raman scattering (SRS) [10—12]. To find the most un-
stable mode for a given k, we must treat a hybrid wave,
partly electrostatic and partly electromagnetic. We call
the resulting process the high frequency hybrid instabil-
ity (HFHI). A singularity exists in 2'„, theory as kz/ko,
the component of the daughter wave k vectors perpendicu-
lar to the density inhomogeneity direction divided by that
of the pump wave, becomes small. The stabilizing con-
tribution to the growth rate due to inhomogeneity scales
as kz, implying infinite stability of the kz = 0 mode
[8,9]. In contrast, SRS sidescattering has a finite threshold
and positive growth rate for densities below quarter criti-
cal, and as k~/ko ~ 0, it reaches the finite backscattering
limit and occurs at the quarter critical density [12]. By
adopting a hybrid or mixed polarization wave description
[13], SRS and 2'~, are shown to be but two limits of a
single instability that differs significantly from 2~~, when

k~/ko = O(vo/c)'i or smaller, where vo is the oscilla-
tory speed of electrons in the field of the pump and c is the
speed of light. These modes will have lower thresholds
and larger growth rates than the most unstable 2'~, modes
whenever v,h/c ) 0 (vo/c) ', where v, h is the thermal
speed of the electron fluid. These conditions imply that
HFHI is an important instability in laser fusion scenarios,
such as direct drive, where high temperature, quarter criti-
cal density plasma is illuminated by UV laser light.

We have unified the quid theories of these two instabili-
ties and solved for the most unstable mode's properties
by recasting the equations describing the instability in the
form of a variational principle for the square of the cou-
pling constant, which is proportional to the intensity of the
pump wave. Starting with functionals of operators that
have nonzero expectation values in the limit of "infinite
pump strength, "

by which we mean the pump is then so
strong that inhomogeneous effects are subdominant, we
additionally retain dominant contributions strictly due to
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inhomogeneity. Any functional that is discarded in this
process can be evaluated ex post facto and is shown to be
ignorable, or kept throughout the calculation and shown
to yield no significant change to the ground state eigen-
value. We adopt a Euclidean pseudometric [14], as de-
fined in Eq. (19), and not the usual Hermitian one because
the approximation scheme described above leads to com-
plex symmetric operators and not self-adjoint ones. The
expectation value of a complex symmetric operator can be
evaluated with a self-dual trial function. The form of this
trial function, in the case of a power law density profile,
is inspired by the form of the wave function in k space
in the infinite pump strength limit, where it approaches a
delta function at the complex k satisfying the Bers-Briggs
pole pinching criterion [15]. For finite pump strengths,
then, the wave function is taken to be a localized trial
function, which we have, in fact, chosen to be a Gauss-
ian, centered at the perfect phase matching point in space,
where the local plasma frequency is or~(0), and cen-
tered at some kH in Fourier space, with a complex width
parameter n, which constitute the central variational pa-
rameters to be chosen by minimizing the pump strength
functional. This procedure yields the complex frequency
in the form of an infinite pump strength contribution plus
a piece due to inhomogeneity, whose imaginary part is
proportional to the wave function width in k space raised
to the power —2/(n + 1), for a z" profile. In its devel-
opment phase, this method has already been applied to the
Rosenbluth model equations [2], the Liu, Rosenbluth, and
White sidescattering model [3], and to SRS and 2or p, sep-
arately, where many of the simplification procedures were
tested [7]. Ultimately, of course, any approximate ana-
lytic method such as this must be tested against numerical
calculations to ascertain its accuracy. Our confidence is
based on the fact that our HFHI results match onto both
SRS and 2'~, limits so well, these limits having been
carefully studied numerically [9,12]. Details of these cal-
culations will be published separately [16].

The coupled wave equations and the operators that
describe the HFHI are [7,16]

d, ,
= [or, —or„(0) (1 —i v1/or1) + V ],

dt, = [or1 (1 + E v1/or1) or (0) + vEV ],

(10)

dt, = [or2(1 —iv2/or2) —or (0) + vEV ]. (12)

K

Inorm l
+ Inorm2

(14)

where all commutators between V and the operators d~. .. I2

are neglected and the latter are placed to the left of all
V's, in anticipation of the evaluation of these functionals
in k space. Also neglected are IpF, and IpE„which are
the expectation values of the operators that include the
terms (d, , d&, + dt, d&, + d„d&, )v and V, respectively.
By keeping them, it can be shown that they make negligible
contributions to the ground state eigenvalue [7,16]. The
four functionals in Eq. (14) then are

Here, V = (V —ikp), up is the unit vector along
the pump electric field, which is assumed to be
along the x axis, and V(x) = or„(x) —or„(0),
which for power law profiles is V(z) = e„"Lz", where
e"„t = or„(0)/(orpL„/c)", and L, is the density scale
length. All frequencies in these equations are normal-
ized to coo, the pump wave frequency, and all wave
vectors are normalized to orp/c. The phenomenological
damping terms are v~ and v2. The perfect phase match-
ing point is at g = 0, where the dielectric constant is
e = 1 —or„(0). The coupling coefficient, vp, is related
to the quiver velocity of the electrons in the uniform elec-
tric field of the pump, vp, by vp = (vp/c)or„(0)~e/2,
and vE = 3v,h/c . The correspondence between the2 2

dependent variables and the electromagnetic potentials
is I'] = A], the component of the vector potential Ai
of the hybrid wave along the electric field of the pump,
'If2 = @1, and 'P3 = exp[ikp . x]rrrr2. The equations
that describe the 2~~, and SRS instabilities are obtained
by setting 'Ir1 = 0 for the former, and 'Ir2 = 0 for the
latter. Combining the three wave equations by ignoring
commutators between X and W operators, we obtain the
following equation for 'Ir3, the amplitude of the strictly
longitudinally polarized daughter wave:

~1~2 ~3+3 I vP I [~13~31~2 + ~23~32 ~1]P3 .

(13)
The MPSP for HFHI, obtained by taking the Euclidean

pseudo inner product [14] between the dual function %3
and both sides of Eq. (13), is

53 = (d&, —V)V,

M13 = —V /~e,

M31 = [V —(up V) ]V /~e

~23 = ~32 = —1(up V)[V —V']/me

(7)

I„„,= (M133831dt, ),

Inormq (~23~32dr, )

IKE ——(V V V d, , dt dt ),

IPE, = (V V V (d, , dt, dt, )V ),

(16)

(17)
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where (8;) = (ql'3, 6;9'3), is the expectation value of the
operator 6;, defined not in terms of the Hermitian inner
product but the Euclidean pseudo inner product between
two complex functions given by

ground state eigenfunction of the instability, we
choose as our trial and dual functions, a Gaussian
in Fourier space centered at k, = k„with a (com-
plex) width 1/~n, and delta functions in the k~
directions,

(p&, @2) = @~(x)$2(x)dx = p~( —k)$2(k) dk.
(19) = &(k —k, )&(ky —ky„) exp[ —n(k, —k„)2].

(20)
All four functionals above are expectation val-

ues of operators that conserve parity. Therefore,

!

and in an attempt to mimic the properties of the Evaluating the functionals in k space, the MPSP becomes

(
k 2 ( D„D—r, (Dr, —C) [1 + p2/(4n)] + Mtt(n)e„Lo. "[D,, + Dr, —(Dp, —C)])
E (RDr [1 + y2/(4n)] + T(~ i) Dt [1 + p2/(4n)])

(21)

where k =(k +k +k )=(k +k ) k

[(~E —k ) + kJ ], C = [1 —2tup(0)], a(
k /k, T =k2/k2, R =1 —T, D(, „(, are the
Fourier transforms of the three free propagators
given in Eqs. (10), (11), and (12), v, = v;mz(0),
Mtt = [(2m)!/(2 m!)], and p, 2, g2, and p2 are some-
what involved k-dependent coefficients [7,16]. By
making !&p! stationary with respect to the variational
parameters and inverting the resulting expression to
obtain the complex frequency of the HFHI, we find [7,16]

2

2 2
(k —k ) — —(v) + v2) + imp+ 5,

(22)

Ace = [1 —vE(e + 2k~)]/2

+ &oC;„h(n) [1 + r, ] ' "+' cos(n/[2(n + 1)]

+ [n/(n + 1)]tan '(~,)), (26)

In =1 & CH&x

Here, z~ = (k /vo), and Ntt(n) = (I/8) (1 +
1/n) (4n M ~ t) '/('+ 'I. Isolating its real and imagi-
nary parts, we rewrite the frequency of the hybrid wave
in the form co~ = A~(n) + ivpl „,where

where yp, the infinite pump strength limit growth rate, is —C;„h(n) [1 + ~,] " "+' ~ sin(~/[2(n + 1)]
(ivp —k2 )

yp vp (. k2)
(23) + [n/(n + 1)]tan '(r, )). (27)

The value of k, about which the trial function is localized,
namely, k,„, is found to be

k,„(k „kY,) = (imp
—k~) + i P

e typ —k2

—i 7r/2 —1/(n+ 1)e
X

(1 + ir, )" (25)

2 1/2
where P = ~evF/&p = 2.75Tkev/(I~4 Ao), where I(4 is
the intensity of the pump wave in units of 10' watts
per square centimeter, Ap, its wavelength in microns, and
Tk, v is the electron Quid temperature in kilo electron
volts. The contribution to the growth rate due to inho-
mogeneity, when the instability occurs in the plane of in-
cidence of the pump, is

2n/(n+ I) —(n+ 2)/(n + I)
]~ = &o[Ntt(n)s„L vp

The three coefficients that define the relative strength
of the damping, k~ -dependent homogeneous plasma
limit growth rate, and the effects of inhomogeneity
are v = (v( + v2)/(2&p), CH = ~avEP/2 = 7 &&

i/210 Tk,v/I)4 Ap, and C;„h(n) = Nit(n) [a L/&0]
respectively. The inhomogeneity parameter is e'„I
[co2(0)/cup]/(cupI. „/c)', where I.„ is the density scale
length, and the pump strength is given in terms of
vp ——1.85 X 10 I)4 Ap.

&/2

Equations (26) and (27), which are our principal re-
sults, are valid approximations for all 7 (= k /&p).
They reduce to the form of SRS backscattering from n, /4
in the 7. = 0 limit, and approach pure 2~~, asymptot-
ically as r, ~ ~ [7,16]. This is shown schematically
in Fig. 1, where the inhomogeneous plasma contribution
(I „'"")to the normalized growth rate (I „) is plotted for the
hybrid instability, for 2'~„and for SRS.

As long as SRS backscattering from n, /4 is above
threshold, i.e., C;„h(n) ( (1 —v)/ sin(n/[2(n + 1)]),
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, I „(n)
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