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Relation between the Scissors Mode and the Interacting Boson Model Deformation
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An interacting boson model sum rule for the strength of exciting the magnetic dipole scissors mode
is used to relate this strength to the quadrupole deformation, resulting in a parameter-free description
of the M1 transition strength over the entire range of nuclei from Nd to W studied experimentally.
Also, the experimentally established quadratic dependence on the quadrupole ground state deformation
is quantitatively reproduced for nuclei up to Yb, but systematic deviations are predicted for heavier
nuclei.
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The general success of the interacting boson model
(IBM) in describing the collective properties of the low-
energy spectra in heavy nuclei is well established [1].
The introduction of the proton-neutron degree of freedom
(called IBM-2) has led to the prediction of a new class of
states whose wave functions have mixed symmetry with
respect to the interchange of protons and neutrons [2].
Among those, the transition to the lowest 1 state, now
called "scissors mode" because of the peculiar motion of
protons against neutrons responsible for it [3], has played
a major role since its experimental discovery about a
decade ago [4]. One of the first successes of the IBM-
2 was the quantitative prediction of its M1 ground state
transition strength (see [4,5] and references therein).

The properties of the M1 scissors mode are well es-
tablished now over a wide range of rare-earth nuclei and
several remarkable features have been established. The
total strength is proportional to the square of the ground
state (g.s.) quadrupole deformation [6]. This behavior has
been (more or less) successfully reproduced in a vari-
ety of calculations (see [7] for references). Furthermore,
such a deformation dependence implies a close correla-
tion to the F2 strength of the transition to the first excited
state, the latter being directly related to the experimental
quadrupole moment [8]. In fact, when the M 1 strength is
plotted versus the factor P = N„N„/(N„+ N„), which
counts the number of interactions between valence pro-
tons (N„) and neutrons (N„) and represents a measure
of the deformation driving proton-neutron interaction [9],
a sharp transition from vibrational to rotational nuclei
is obtained at P = 4 —5 followed by a saturation for
large P at a value B(M1) = 3p, tv. Attempts to under-2

stand the correlation between magnetic dipole strength
and quadrupole collectivity within the IBM-2 have been
based on sum rule approaches [10,11].

Recently, a phenomenological parameter-free sum rule
inspired by the two-rotor model (although valid in a gen-
eral context) has been formulated [12] and shown to cor-
respond to the IBM-2 sum rule of Ref. [10] in the classical
limit [13]. It is able to describe the experimentally found

low-lying M1 strength for transitional and well-deformed
even-even nuclei ranging from Nd to Yb [7]. Here, we
aim at a similar systematic description of the Ml scis-
sors mode in the framework of IBM-2. The sum rule of
Ref. [10] relates the Ml strength to the average number
of quadrupole bosons in the g.s. Using the intrinsic state
[14,15] we can express the average number of quadrupole
bosons by the IBM deformation parameter P, which in
turn can be related to geometrical definitions of deforma-
tion. As a result, a sum rule for the Ml scissors mode
strength is derived which, besides an obvious dependence
on the boson g factors, is parameter free.

Before beginning the discussion, we briefly summarize
the experimental database on the scissors mode strength.
With the exception of ' Gd, where results are taken from
(e, e') scattering [16],all quoted transition strengths for the
M 1 scissors mode are derived from (y, y') experiments.
Experimental results have been reported for ' ' ' Nd
[17] 148,150,152,154Sm [18] 156,158,160Gd [1920] 160,162,164Dy

[21] 166,168,170Fr [22] 172,174,176Yb [23] and 182, 184,186W

[24]. The prominent transitions in ' Dy have been shown
to contain an appreciable spin part [25] which has been re-
moved assuming constructive interference with the orbital
M1 strength. A preliminary result for ' Hf is also avail-
able [26].

To determine the total B(M1) strength of the scissors
mode the transitions to all 1+ states were summed
in the excitation energy range F = 2.5 —4 MeV. In
cases where the parity of a dipole state is not uniquely
determined all transitions with a ratio B(1 ~ 21 )/B(1 ~
01+) ~ 1 were assumed to have Ml character. Here,
B(1 ~ 01), B(1 ~ 21) denote the reduced transition
probabilities for the decay to the ground and first excited
state, respectively. The given error bars are a conservative
estimate obtained by summing up the errors of the
individual transitions.

We start with the sum rule of Ref. [10]

QB(M1: 0+ ~ lf ) = (g —g„) (OINdl0&,

(1)
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where (O~Nq~O) is the expectation value of the d-boson
number operator in the g.s. Here, N, N are the proton
and neutron boson numbers, g, g, are the corresponding

g factors, N = N + N„and P = 2N N„/(N + N„)
Using this sum rule the average number of quadrupole
bosons in the g.s., Nq = (O~Nq~O)/N, is extracted from
the measured orbital B(M1) strengths using a consid-
erably extended database compared to the one used in
Ref. [10]. In Fig. 1 the quantity Nq is plotted as a func-
tion of the P factor. A new variable P„~ is introduced
which distinguishes nuclei below (P„~ = P —P,„) and
above (P„~ = P,„—P) midshell, where P,„ is the
value of P at midshell ~ In the rare-earth region one
has N „=8 and N, ,„=11. Thus, P „=2 X 8 X
11/(8 + 11) = 9.26.

Both above and below midshell N~ is correlated with
P, rising monotonically with P. However, a striking
difference is visible when midshell is reached for either
N or N„or both. Below, one observes the transition
from vibrational to rotational nuclei as P increases (~P„~ ~

decreases) followed by a saturation region roughly in
accord with the prediction in the SU(3) limit, Nq = 2/3.
Above midshell, although N~ again increases with P
(~P„~ ~

decreases), the average magnitude of Nq is reduced
rejecting less deformed nuclei. This asymmetry can be
traced back to the microscopic shell structure [11]. The
E2 strength in these nuclei shows a similar behavior,
indicating a reduction of the proton-neutron interaction
energy due to Pauli blocking [27].

The correlation of B(M1) and B(E2) strength suggests
a common origin in collective properties of the nucleus
such as deformation. In the intrinsic state representation
the average number of quadrupole bo sons for large

P N/(1 + P ) is [14,28]

(2)

&z)
P =

2 Z
P2. (3)

Zva 13

Here, Z/Z„~ is the ratio of the total to the valence proton
number. The parameter A rejects the extent to which the
transition to the first excited state saturates the B(E2) sum
rule

g, B(E2;0+ —2,')
B(E2;0+ ~ 2) )

(4)

Equation (3) is inspired by a similar relationship within
IBM-1 for the ratio of the total number of valence
nucleons to the mass number [14]. However, since P2 is
determined from electromagnetic transitions only protons
contribute. The scaling ratio Z/Z„~ reflects the restriction
of the IBM to valence nucleons compared to the total
proton body which is considered in the geometrical
definition of deformation. One should note that Z„i is
not counted as a hole number above midshell.

In Fig. 2(a) the ratio R of experimental to theoretical
Nq values calculated with Eqs. (2) and (3) is displayed
as a function of the total boson number. The P2 values
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FIG. l. Average number Nz of quadrupole bosons in the
g.s. as a function of the P factor defined as P„~ = P —Pm»
and P«~ = Pm„—P for nuclei below and above midshell,
respectively.

FIG. 2. (a) Ratio of experimental scissors mode strengths to
IBM-2 predictions as a function of the total boson number N
using Eq. (2), (b) using the 1/N corrected Eq. (5).
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are taken from Ref. [29]. For simplicity, A = 1 is used.
Also the boson g factors are put to the microscopically
suggested [30] free values g = 1 and g, = 0.

The agreement is very encouraging, although the ex-
perimental values overall tend to be somewhat smaller
than the prediction. The deviations are particularly pro-
nounced for small boson numbers. Keeping in mind that
Eq. (2) holds in the limit of large p2N/(1 + p ) only,
one should correct to the next order [31]

ONd
0 Sm
&Gd

3 —DDy

P2 1(
1 + —1—1+P' N i

1 + P')
p2

+Oj 1

([P N(1 + P )]
5

The corresponding results are shown in Fig. 2(b). Includ-
ing this correction, we attain a satisfactory description of
the M 1 scissors mode strength for all nuclei where data
are available.

One can try to extend the approach presented here
to the actinide region where a similar correlation of
B(M1) and B(E2) is found [32]. However, data are vary
scarce. For those nuclei, where experimental information
is available, application of Eq. (5) yields R = 0.76(7) for
23zTh [33], R = 0.92(14) for U [34], and R = 0.78(6)
for U [33]. The somewhat low values for Th and

U might be explained by the restriction in Ref. [33] to
a comparison with strong B(Ml) transitions observed in

(e, e') scattering, confined to a fairly small energy interval
F., = 2.0—2.5 MeV. In the (y, y') study of U good
agreement with the sum rule prediction is obtained if
one sums over the whole investigated energy range F.
1.7—3.2 MeV. Thus, the few available data indicate an
applicability of the sum rule in the actinide region.

Recently, the total scissors mode strength in the Sm
and Nd chains [6,17] was experimentally established to
have a quadratic dependence on the g.s. deformation. In
Fig. 3(a), all available experimental data are plotted as a
function of p2. A linear relation is clearly visible. The
solid line is a least-squares fit (including the origin) which
results in an average value

B(M1);„' = 26.0(4)p2[p, ~] . (6)

It may be noted that an unrestricted fit leads to an intercept
value compatible with zero. The data on ' Hf and

W have not been included in the fit for reasons
which become clear below. The experimental numbers
on the W isotopes are significantly smaller than the values
predicted by Eq. (6). This implies that Eq. (5) has a wider
range of applicability.

In Fig. 3(b) we plot the scissors M 1 strength calculated
with Eqs. (1), (3), and (5) as a function of p2 for all
stable even-even isotopes from Nd to W. The solid line
is again the linear fit obtained for the restricted set of data
shown in Fig. 3(a). Although some individual scattering
is obtained, the phenomenologically established quadratic
Pz dePendence is well reProduced for all nuclei in the Nd
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FIG. 3. (a) Experimental Ml scissors mode strengths as a
function of the square of the quadrupole deformation parameter
P2. The straight line is a least-squares fit assuming intercept
zero. (b) Prediction of the scissors mode strength for all even-
even stable nuclei from Nd to W calculated with Eq. (5).

to Yb isotope chains. However, systematic deviations of
the scissors mode strength from the quadratic deformation
dependence are obtained starting from Hf and increasing
towards the heavier W isotope chains. The available
data on ' ' ' W seem to confirm this interesting
prediction, as suggested by Fig. 2(b), but the experimental
uncertainties may be somewhat large at present.

In the region of y-soft nuclei the predicted B(M1) val-
ues decrease very fast. However, the approximation given
in Eq. (5) is not valid for the ground state of nonaxially
symmetric nuclei. The 1/P N/(1 + Pz) corrections in

Eq. (5) result from an angular momentum projection to
the angular momentum zero state of the rotational band
built on an axially symmetric intrinsic state. For nonaxi-
ally symmetric nuclei, there is more than one angular mo-
mentum zero state in a band. In this case, Eq. (5) gives
the total Nd value for all angular momentum zero states to
order 1/[p N/(1 + p )] . The ground state is expected
to have the largest share of quadrupole bosons, so this ap-
proximation may still be valid to within the present exper-
imental error as long as pzN/(I + p ) is large. Further-
more, the intrinsic state formalism will be less valid for
nuclei which are not strongly deformed; that is, for nuclei
which have a shallow energy minimum as a function of P.

To summarize, a parameter-free approximate sum rule
for the M1 scissors mode is derived within the IBM-
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2. A relation between the deformation in the intrinsic
IBM mode (which is due to valence nucleons only) and
the geometrical definition of the Bohr-Mottelson model
is given, which allows a calculation based solely on
experimental information about quadrupole moments. The
variation of the scissors mode strength can be described
throughout the whole body of experimental data ranging
from Nd to W. The few available experimental results
indicate that the sum rule might also be applicable to the
actinide region.

With this approach the experimentally established
quadratic dependence of the scissors mode strength on the
quadrupole g.s. deformation can be reproduced for even-
even nuclei in the Nd to Yb chains. Towards heavier
nuclei (Hf, W) systematic deviations are predicted, al-
though Eq. (5) may be less accurate for both these nuclei
because P2N/(I + P2) is decreasing. For y-soft nuclei,
Eq. (5) gives an upper limit on the average number of
quadrupole bosons for large values of P N j(1 + P ).
The properties of the scissors mode in the Os-Pt region
are still an open problem and experimental studies are
clearly needed. Although challenging, the feasibility
of such experiments was recently demonstrated for the
'9 Pt(y, y') reaction at the S-DALINAC accelerator
in Darmstadt within a Cologne/Darmstadt/Rossendorf
collaboration using a EUROBALL cluster [35] module.
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