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Equation of State for the SU(3) Gauge Theory
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By investigating the SU(3) gauge theory thermodynamics on lattices of various sizes we can control
finite lattice cutoff effects. We calculate the pressure and energy density on lattices with temporal
extent N, = 4, 6, and 8 and spatial extent N = 16 and 32, and extrapolate to the continuum limit.
We find a deviation from ideal gas behavior of (15—20)'Fo, even at temperatures as high as T —3T,
A calculation of the critical temperature for N = 8 and 12 and the string tension for N, = 32 is
performed to fix the temperature scale, yielding T, /~o. = 0.629(3) in the continuum limit.
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Reaching a quantitative understanding of the equation
of state (EOS) of QCD is one of the central goals in finite
temperature field theory. The intuitive picture of the high
temperature phase of QCD behaving like a gas of weakly
interacting quarks and gluons is based on leading order
perturbation theory. However, the well-known infrared
problems of QCD lead to a poor convergence of the
perturbative expansion of the thermodynamic potential
even at temperatures very much higher than T, [1].

At finite temperature, the Euclidean time extent of the
system is fixed by the temperature T. Correspondingly,
lattice calculations are performed on asymmetric lattices
of size N3 X N, with N » N, = 1/aT, where a is
the lattice spacing. So far calculations of bulk thermo-
dynamic quantities have, in general, been carried out on
lattices with N, = 4 [2]. A small N, is a severe limita-
tion, which leads to quite large cutoff effects in thermo-
dynamic quantities. In the thermodynamic limit, N
~, these corrections are of O(N ). The energy density
(e) and pressure (p) of an ideal gluon gas are then given
by [3]

e 3p, rr' 2~4 1
N —1 + + g 1 l
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The cutoff effects result from the discretization of the field
strength tensor, which introduces O(a ) deviations from
its continuum counterpart. In the case of a free gas it is
found that the corrections are as large as 50% for N, = 4.

In order to compare lattice calculations of the EOS with
continuum perturbation theory or phenomenological mod-
els one has to control these finite cutoff effects. This re-
quires a systematic analysis of thermodynamic quantities
on lattices with varying N„which then allows an extrapo-
lation of the numerical results to the continuum limit
(N, ~ ~). We have carried out such an investigation in
pure SU(3) gauge theory, i.e. , in the quenched approxi-
mation of QCD. For this purpose, one needs high pre-
cision results for the action density on asymmetric finite
temperature lattices and, in addition, on symmetric, zero

temperature lattices of size N . All basic thermodynamic
quantities can then be calculated from the difference of ac-
tion densities at zero (Sp) and finite (ST) temperature [4],
which are proportional to the plaquette expectation val-

1
ues, Sp(T) = 6(l —

s TrU~UzU3U4). We define AS as
N, times this difference, AS = N, (Sp —ST). One also
needs to know the dependence of the physical temperature
on the bare gauge coupling, T ' = N, a(g ).

For our simulations we use an over-relaxed heat-bath
algorithm with 5 —9 over-relaxation updates followed by
one heat-bath update (=—one iteration). At several values
of the gauge coupling we have performed between 20000
and 30000 iterations on lattices of size 16 X 4 and
32 X N with N, = 6 and 8. Note that this implies
a ratio N /N, ~ 4, which is sufficiently large to have
reached the thermodynamic limit in the plasma phase [3].
The zero temperature simulations were done on 16 and
32 lattices with typically 5000 to 10000 iterations. The
temperature scale is determined through calculations of
the critical couplings of the deconfinement transition on
lattices with N, = 4, 6, 8, and 12 and acalculation of the
string tension on 32" lattices at these critical couplings.

The temperature scale. —Asymptotically, for large val-
ues of p = 6/g, the temperature T = 1/N, a(p) is
given by the perturbative scaling relation a(p)At
R( P), with

g 2p )sl/121
R(P) =

~ exp[ —4~ P/33]. (2)
33 )

At lower p values, this relation between the lattice cutoff
a and the coupling g receives corrections and needs
to be obtained through the calculation of a physical
quantity in units of a, e.g. , the string tension or the
critical temperature. Different observables may then lead
to relations a(gz), which differ from each other by O(az)
terms. However, it seems that these differences are small
for intermediate values of the gauge coupling. This is
seen in the small g dependence of ratios of physical
observables. In any case, if one chooses a particular
relation a(gz), obtained from one physical observable, all
O(a ) corrections will drop out in the continuum limit.
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TABLE I. String tensions calculated at the critical couplings
for the deconfinement transition, P, (N.,) For N, = 4 and 6
we evaluate o a at the infinite volume critical coupling using
an interpolation of values from Ref. [8]. For N, = 8 and 12
we have calculated the string tension at the finite volume
critical couplings. The systematic error is also given in these
cases.

N

6
8

12

5.6925 (2)
5.8941 (5)
6.0609 (9)
6.3331 (13)

0.4179 (24)
0.2734 (37)
0.1958 (17)
0.1347 (6)

T, /~c. r

0.5983 (30)
0.6096 (71)
0.6383 (SS) (+13)
0.6187 (28) (+42)

= 0.625 ~ 0.003(+0.004) .

The number in parentheses indicates the systematic shift
we expect from the infinite volume extrapolation of the
critical couplings. We note that the ratio T, / dodoes.
not show any significant finite cutoff corrections and the
parameter a2 in our fit is compatible with zero within
errors. Our estimate of T, /Ja is about 10% .larger than
earlier estimates [9],which is due to our newly determined

Here we will fix the relation between a and g through
a calculation of the critical temperature. The critical
couplings have been extracted from the locations of peaks
in the Polyakov loop susceptibility [5]. For the N, =
4 and 6 lattices our analysis of the critical couplings is in
complete agreement with earlier high statistics calculations
[6]. For N, = 8 and 12 we find significantly larger values
than those obtained in previous calculations [7] on smaller
spatial lattices. A comparison shows, however, that our
result is consistent with the expected shift towards larger
values due to the larger spatial volume used here.

The absolute temperature scale will be fixed through a
determination of the string tension on 16 and 32 lat-
tices at the critical couplings P, (N, ). We have obtained
the string tension from an analysis of heavy quark po-
tentials calculated from smeared Wilson loops [5]. For
N, = 4 and 6 the ratio T, /~ohas been d. etermined at
the critical couplings extrapolated to the infinite volume
limit. For N, = 8 and 12 we evaluate this ratio at the
critical couplings obtained on lattices with finite N /N,
From the volume dependence of the critical couplings
studied in Ref. [6] we expect that the infinite volume criti-
cal couplings will be larger by about 0.0017 for N
8 and 0.0057 for N, = 12. We therefore systematically
underestimate the ratio T,/bin these case.s. The ex-
pected systematic error due to this effect has been esti-
mated by assuming an exponential scaling of ~o. a ac-
cording to the asymptotic renormalization group equation.

The results for T, /~oare summa. rized. in Table. I. We
have extrapolated the results for the different N, values to
the continuum limit using a fit of the form ao + az/N,
This yields

critical couplings for the larger lattices. Using ~o. =
420 MeV we find a critical temperature of about 260 MeV.

The lattice cutoff, extracted from the location of the
critical couplings, shows the well-known deviations from
the asymptotic scaling relation, Eq. (2). This is consistent
with recent high statistics results for the AP function
[10], which describes the change in P needed to change
the cutoff by a factor of 2. To parametrize the relation
between cutoff and gauge coupling such that these Monte
Carlo results as well as the critical temperatures are
reproduced we have tried several alternatives. We started
with a parametrization of the form aAI = R(P, rf) X
0.4818 [9] where P,rr is a renormalized coupling [11]
defined through the action expectation value P, t t- =
3(N —1)/25o. Since T, and the 5P values below

P ( 7 were not too well reproduced by this, we used
instead the ansatz aAI = R(P)A(P), where A(P) was
interpolated as in Ref. [3], and, in addition, adjusted to
coincide with the effective coupling parametrization for
P ) 7[5].

Equation of state —Our cal. culation of thermodynamic
quantities is based on a direct evaluation of the free
energy density in large spatial volumes, i.e. , close to
the thermodynamic limit. This requires a numerical
integration of the difference of action densities,

p p

T4 P0

f
T4 P0

p= N, dp (So ST) (4)

where the derivative aiig /r)a is obtained from our
explicit parametrization of a(gz).

In Fig. 1 we show AS for N, = 8, which is statistically
the most difficult case. For a calculation of the pressure
we have to integrate the action densities with respect to
P, Eq. (4). For this purpose we use interpolations as
shown in Fig. 1. As can be seen from the figure, AS
rapidly becomes small below the critical coupling. We
thus can use a value Po close to the critical coupling to
normalize the free energy density. Results obtained for
the pressure are shown in Fig. 2(a). The observed cutoff
dependence refIects the N dependence of the free gluon
gas. Quantitatively, however, we find that the cutoff
dependence of the pressure is considerably weaker than
suggested by the ideal gas calculation.

Errors for the pressure as a function of temperature
arise from ambiguities in determining the temperature

The above relation gives the pressure (free energy density)
difference between two temperatures corresponding to the
two couplings Po and P.

Making use of basic thermodynamic relations we can
then evaluate the energy density in the thermodynamic
limit from

E' 3p 6 4 4 Ag

T4 eT
= T (p/T ) = 6N, a —(So —ST),

Qa

(5)
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FIG. 1. Difference of action densities 65 for N, = 8 and
spatial lattice size N„= 32. The vertical line shows the
location of the critical coupling.

scale as well as from our interpolating curves for the
action densities. To estimate the interpolation errors, we
have integrated AS also by using the trapezoidal rule. The
resulting differences are on the level of a few percent.
They are shown as typical error bars in Fig. 2(a). The
ambiguities arising from the choice of parametrization of
the temperature scale only amount to a shift in T. This
effect is largest for N = 4 and is shown as a dashed
curve in Fig. 2(a), for which the temperature scale from
the effective coupling scheme was used.

A similar analysis was carried out for (e —3p)/T
Results are shown in Fig. 2(b). Also here we have
examined the systematic errors arising from the different
parametrizations of a(g2). For N, = 4 these errors are
about 6% on the peak of (e —3p)/T and less than 2%
everywhere else. For N = 6, 8 the errors are on the 2%
level. The energy density is then obtained by combining
the results for p and e —3p.

Based on the analysis of pressure and energy density
at various N values we attempt to extrapolate these
quantities to the continuum limit. In the case of a free
theory the leading N corrections to the continuum limit
provide a good description of the actual N dependence
only for N, ~ 6. This is seen qualitatively also in our
numerical data. To extrapolate to the continuum limit,
we therefore use the N, = 6 and 8 data only, following
Eq. (I),

(6)

The systematic error in (p/T )o was estimated by compar-
ing different parametrizations of the temperature scale. A
similar analysis has been performed for the energy density.

The extrapolations of pressure, energy, and entropy
density are presented in Fig. 3. Note that the curves shown
are continuous at T„although we have clear indications
for a first order transition also from our calculations for

3 — )

FIG. 2. (a) The pressure versus T/T, for N, = 4, 6, and. 8,
integrating the interpolations for the action density. Solid
curves show our parametrization. The dashed curve for N = 4
is the result of using the temperature scale from the effective
coupling scheme. The horizontal dash-dotted lines show the
ideal gas values for N, = 4, 6, and 8; the horizontal dashed
line is the continuum value. In (b) we show the difference
(~ —3p)/T'

N, —8. Since on a finite spatial lattice there are no
discontinuities we have averaged over the metastabilities.
However, we show the expected size of the discontinuity
in the energy density in the thermodynamic limit t6j as a
hatched vertical band in Fig. 3. Over a wide temperature
range we find that the difference between the extrapolated
values and the results for N, = 8 is less than 4%, whereas
the corresponding difference for the ideal gas is about 8%.
Consequently, at fixed N„ the ratio between the numerical
data and the ideal gas limit for, e.g. , the energy density,
is not a good approximation to the continuum limit. For
instance, at T = 4T, , the ratio is changing from 0.72 at
N = 4 to 0.86 at N, = 8, whereas the extrapolated result
is 0.89. Thus, the extrapolated results are closer to the
ideal gas limit than expected on the basis of the N, = 4
results.
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To conclude, we have carried out a systematic inves-
tigation of thermodynamic quantities on different size
lattices. This allowed us to analyze finite cutoff effects.
For the first time, from lattice calculations of the pure
SU(3) gauge theory, we thus obtained results for thermo-
dynamic quantities in the continuum limit.

The work presented here would not have been possi-
ble without the 265-node QUADRICS parallel computer
funded by the DFG under Contract No. Pe 340/6-1 for
the DFG-Forschungsschwerpunkt "Dynamische Fermio-
nen. " It has also been supported by the DFG under Grant
No. Pe 340/3-2.
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FIG. 3. Extrapolation to the continuum limit for the energy
density, entropy density, and pressure versus T/T, The da.shed
horizontal line shows the ideal gas limit. The hatched vertical
band indicates the size of the discontinuity in e/T (latent heat)
at T, [6]. Typical error bars are shown for all curves.

There are two general features of the extrapolated
results for the equation of state of a gluon gas. First,
the energy density rises rapidly to about 85% of the ideal
gas value at 2T, and then shows a rather slow increase,
which is consistent with a logarithmic behavior as one
would expect from a leading order perturbative correction.
Second, the pressure rises much more slowly near T, and
even at T = 3T, shows sizable deviations from the ideal
gas relation e = 3p.

The trace anomaly is related to the difference be-
tween the gluon condensate at zero and finite temperature
[12], e —3p = G (0) —G (T) At the pea. k position
of (e —3p)/T at T = 1.1T„one has (e —3p)z„k ——

(0.57 ~ 0.02)o. = 2.3 GeV/fm, which should be com-
pared with the value of the zero temperature gluon
condensate, G (0) = 2 GeV/fm [12]. This fulfills the
above relation if G2(T) = 0 at T = 1.1T, .
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