
VOLUME 75, NUMBER 23 PHYSICAL REVIEW LETTERS 4 DEcEMBm 1995
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We present the explicit form for all the four-dimensional, static, spherically symmetric solutions
in (4 + n)-d Abelian Kaluza-Klein theory by performing a subset of SO(2, n) transformations
corresponding to four SO(1, 1) boosts on the Schwarzschild solution, supplemented by SO(n)/SO(n—
2) transformations. The solutions are parametrized by the mass M, Taub-NUT charge a, and n electric

Q and n magnetic 2 charges. Nonextreme black holes (with zero Taub-NUT charge) have either the
Reissner-Nordstrom or Schwarzschild global space-time. Supersymmetric extreme black holes have a
null or naked singularity, while nonsupersymmetric extreme ones have a global space-time of extreme
Reissner-Nordstrom black holes.

PACS numbers: 04.50.+h, 04.20.Jb, 04.70.Bw, 11.25.Mj

Theories that attempt to unify gravity with other forces
of nature in general involve, along with the graviton, ad-
ditional scalar fields. Nontrivial four-dimensional (4-d)
configurations for such theories include a spatial varia-
tion of scalar fields, which in turn affects the space-time
and thermal properties of such configurations. In particu-
lar, spherically symmetric solutions in Einstein-Maxwell-
dilaton gravity have been studied extensively [1]. A
subset of such configurations corresponds to black holes
(BH s) which arise within effective (super)gravity theo-
ries describing superstring vacua. Configurations arising
in the compactification of (4 + n)-d gravity, i.e. , Kaluza-
Klein (KK) theories [2], are also of interest, since KK
theory attempts to unify gravity with gauge interactions.
In addition, such configurations can be viewed as a subset
of BH's within the effective 4-d theory of heterotic super-
string vacua [3,4].

In this Letter, we find the explicit form for all the static,
spherically symmetric solutions in (4 + n)-d Abelian KK
theory. These results as well as analogous results for

(4+n}
gwrr

BH s in effective string theory [5] were anticipated in
Ref. [6], where the existence of a general class of solu-
tions, which are obtained by appropriate generating tech-
niques, was proven, however, without explicit calculations
of the sort we shall present here. Such solutions can be
generated by a subset of the SO(2, n) [t: SL(2 + n, N)]
transformations on the Schwarzschild solution. The ex-
plicit form of the 4-d space-time metric allows for the
study of the global space-time and the thermal properties
of such configurations. The study generalizes previous
studies [7—9] of BH's in 5-d KK theory, as well as re-
cent studies [10—12] of BH's with constrained charges in

(4 + n)-d Abelian KK theory. In addition, the work sets
a stage for generating general axisymmetric solutions in
KK theory [13] as well as in other sectors of supergravity
theories [14].

The starting point is the effective 4-d Abelian KK
theory obtained from (4 + n)-d pure gravity by compact-
ifying the extra n spatial coordinates on a torus by using

!

the following KK metric Ansatz. '
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where g~, is the 4-d Einstein frame metric A' are n

U(1) gauge fields, p,i is the unimodular part of the

internal metric g;+4i+4, and ct = [(n + 2)/nj ~ . [The
(4+n} 1 2

convention for the signature of the metric in this paper
is (+ + + —) with the time coordinate in the fourth
component. ]

Static or stationary solutions are invariant under the
time translation, which can be considered along with
n internal U(1) gauge transformations as a part of the
(n + 1)-parameter Abelian isometry group generated by
the commuting Killing vector fields se;:= 6 (i =
1, . . . , n + 1) of a (4 + n)-d space-time manifold M. In
this case, the projection of the (4 + n)-d manifold M onto

the set 5 of the orbits of the isometry group in M allows
one to express the (4 + n)-d Einstein-Poincare gravity
action as the following effective 3-d one [7,15]:

~ = —
—,~—h[&() —4Tr(A'

where h, b
=—rg, b (a, b = 1, 2, 3) is the rescaled metric

on S and

~ 1
7 Cc)

—7 CcP A + 7 CcPCO
(3)

is the (n + 2) X (n + 2) symmetric, unimodular matrix
(4+~} W rrof scalar fields on S. Here A;i = gott

detA;~, and g, b = g, b
—A'is;, g~b The "potential".
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b;c
co —= (col, ... , ~„+l) defined as R, co; = ~j, Egbgsi'
(e,b, =—e„b,4 ~4+„1) replaces the degrees of freedom of

(4+n)s;, = g;+3, . The effective 3-d Lagrangian density (2)
is invariant under the global SL(2 + n, lt) target space
transformations [15]:

tl gal h, b ~h, b, (4)

where 'U P SL(2 + n, )I). In particular, the SO(n)
transformations [12] of the effective 4-d Lagrangian den-
sity constitute a subset of the SL(2 + n, II) transforma-
tions, which do not affect the 4-d space-time part of the
metric.

The physically interesting solutions correspond to the
configurations with an asymptotically (~r~ ~ ~) fiat 4-d
space-time metric and constant values of the other 4-d
fields. Without loss of generality one can take the Ansatz

(gP. )- = n~. (~„')- = o, V- = o. (P,)- = 6i, r,

(&)

which yields g = diag( —1, —1, 1, ... , 1).
The only subset of SL(2 + n, 9t) transformations (4),

which preserves the asymptotic boundary conditions (5),
is the SO(2, n) transformation. A subset of SO(2, n) trans-
formations can then be used to act on known solutions to
generate a new set of solutions of the equations of motion
for the effective 3-d Lagrangian density (2).

In the following, we shall concentrate on static, spher-
ically symmetric solutions. Spherical symmetry implies
that for such configurations the metric h, b, in polar co-
ordinates (r, 0, P), takes the form

h, b
= diag[1, f(r),f(r) sin 0],

where a, b = r, 0, P, and g depends only on the radial
coordinate r. The transformation between the 3-d fields

(h, b and g) and the corresponding 4-d fields is of the
form

e ~ g~, = diag[ —~ ', —~ 'f, —~ 'f sin 0, (A") '],
2p/nn p gi pi+ l, l /pl l

i+1,j+1~

A~ = r 'f cos0e ~ " p' B,coj+l, (7)

with the constraint A' 8, co& = 0 that the unphysical
Taub-NUT charge is absent. Here the spherically sym-
metric Ansatg for the 4-d metric is given by g~, =
diag[I/A(r), R(r), R(r) sin 0, —A(r)], and the 4-d scalar
fields p and p;j depend only on the radial coordinate r.

One way to generate the most general static, spheri-
cally symmetric solutions [with the Ansatze (7)] is by per-
forming a subset of SO(2, n) transformations on the 4-d
Schwarzschild solution with the ADM mass I, which in
terms of the 3-d quantities is of the following form:

~ = diag — 1 —,— 1 —,1, . . . , 1, 8

and f(r) = r(r —m) The subset of S.O(2, n) transforma-
tions that generates new types of solutions is the quotient
space SO(2, n)/'SO(n). [All the axisymmetric stationary
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solutions can be generated by performing SO(2, n)/SO(n)
transformations on the Kerr solution [13].] The 2n + 1

parameters of SO(2, n)/SO(n) along with the parameter m

constitute the 2n + 2 parameters, which correspond to the
mass M, n electric Q, and n magnetic 2 charges as well
as the Taub-NUT charge a of the most general, spherically
symmetric, stationary solution in (4 + n)-d KK theory. In

fact, each representative of the elements of SO(2, n)/SO(n)
generates a physical parameter of the solution (note that
similar observations are due to Gibbons [16]):n boosts on
the first (or the second) index of g (of the Schwarzschild
solution) and on one of the last n indices of y generate
magnetic (or electric) charges, and an SO(2) rotation on
the first two indices of y generates an unphysical Taub-
NUT charge a.

For the purpose of obtaining the explicit form of
static, spherically symmetric solutions with a general
charge configuration, it is convenient to first perform
two successive SO(1, 1) boosts on the 1st and (n + l)th,
and the 2nd and (n + 2)th indices of (8) with the boost
parameters 6P g, respectively, yielding

r+P

IPI

0
r+2P —Q

r+2P

0
lal

).+2P

IPI

r+2P —P

0

).+2P

).+ Q
) +2P

, (9)

and f(r) = r(r —2P). Here P —= m/2 and Q
P + QQ2 + P2 (P = P + QP2 + P2) where P =—

m sinh6p cosh6p (Q = m sinh6L2 cosh6L2). I is the
(n —2) X (n —2) identity matrix, denotes the zero
entries, and the event horizon r+ is shifted to the
origin (r = 0). The solution (9) corresponds to the

U(1)~ X U(1)~ BH solutions with the ADM mass
M = P + Q, the physical magnetic (electric) charge P
(Q), and p ~ 0 measuring a deviation from the super-
symmetric limit [10]. These solutions were first found in
Refs. [11,12] by directly solving the equations of motion
with a diagonal internal metric Ansatz.

A class of new solutions can be obtained by perform-
ing SO(n)/SO(n —2) transformations, parametrized by
2n —3 parameters, on (9). Such transformations act on
the lower-right n X n part of g and, thus, do not affect
the 4-d space-time metric g~, and the dilaton p. The
transformed solutions have n electric Q and n magnetic
2 charges, subject to one constraint 2 Q = 0.

Thus, in order to generate the most general, static,
spherically symmetric solution, one needs only one more
parameter, associated with SO(2, n)/SO(n) transforma-
tions. Such a parameter is provided by two SO(1, 1)
boosts on the 1st and (n + 2)th, and the 2nd and (n +
l)th indices of g in (9), whose respective boost parame-
ters 6~ and 62 have to be related to one another in order
to yield solutions with no Taub-NUT charge. The trans-
formed solutions are of the form
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where

—2'/n n
Pij ~ij e Pn —1,n —1

Z [2(' 2)/"]
Pn 1,n (xY)'/'

r(r + 2P) X
R (XY) )/2 2P/A

(XY)»z ' ' Y'
~e[2(n —2)/n n jp

(XY)«z

(r + Q) (r + P) fz(. ,)/..),
(XY)'/z (10)

X = r + [(2P —P + Q) cosh Bz + P]r
Y = r + [(2P + P —Q) cosh 6~ + Q]r

W = r + [(2P + P —Q) cosh Bi + (2P

+ 2[P(2P —P —Q) + PQ]cosh Bi

+ (2P —Q) P cosh 6 i + (2P —P) Q

+ IPIIQ!coshB(cosh62sinhB) sinh62,

+ 2P Q cosh 62,

+ 2PP cosh Bi,
—P + Q) cosh Bz]r

cosh 62

cosh 62

Z = [IPI sinhBi coshBz + IQI sinhBzcoshB)]r

+ IPIQ sinhBi + PIQI si»Bz,
with the nonzero electric and magnetic charges and the ADM mass given by

P„

Q.—i

Q.

IPI coshB~ coshBz + IQI sinhB~ sinh62,

(P —Q + 2—P) coshB( sinhB),

(P —Q —2—P) coshBz sinh62,

IQI coshB~ cosh62 + IPI sinhB) sinhBz,

(2P + P —Q) cosh Bi + (2P + Q —P) cosh Bz

+P+Q —4P. (12)

Here the electric fields are given by E; = R 'e ~p'»Q»
(i = 1, .. ., n) The .requirement A' B,cu = 0, i.e., the
unphysical Taub-NUT charge a is zero, relates the two
boost parameters 612 in the following way:

IPI tanh62 + IQI t»hB) = 0. (13)
Thereby, the transformed solutions (10) are parametrized
by four independent parameters, i.e., the nonextremality
parameter P, the electric Q, and magnetic P charges of
the U(1)~ X U(1)@ solution, and the boost parameters
6& z, subject to the constraint (13). When the nonex-
tremality parameter P is zero and the other parameters
are kept finite, the no-Taub-NUT-charge condition (13)
ensures 2 Q = 0, i.e., this is a condition satisfied by
supersymmetric configurations [10]. The resultant solu-
tion is, in turn, specified by the mass M and four charges;
however, only three of them are independent. When no-
Taub-NUT-charge condition (13) is imposed, the mass M
is compatible with the corresponding Bogomol'nyi bound:
M I&l + Ic) I.

The remaining 2n —3 degrees of freedom, required to
parametrize the most general, static, spherically symmetric
BH's in Abelian (4 + n)-d KK theory, are then provided
by SO(n)/SO(n —2) rotations on the solutions (10).

We shall now analyze the global space-time structure
and the thermal properties of the above solution. Since
SO(n)/SO(n —2) rotations on (10) do not change the 4-
d space-time (as well as cp and the scalar product 2 Q),
it is sufficient to consider the solutions (10) for the pur-
pose of determining the space-time and thermal proper-
ties for all the (4 + n) dAbelian -KK BH's. Without
loss of generality, we assume that IQI ~ IPI. In the case
of IQI IPI, the roles of (6~, 6z) and (P, Q) are inter-
changed.

We first discuss the singularity structure. Nonextreme
solutions (P ) 0) always have a space-time singularity
behind or at r = —2P. Namely, the space-time singu-
larity, i.e., the point at which R(r) = 0, where the Ricci
scalar R blows up, occurs at the real roots of X(r) and
Y(r), which are always ~ —2P with equality holding
when P = 0 or 62 = 0. On the other hand, A(r) is zero at
r = 0 and r = —2P, provided X(r) and Y(r) do not have
roots at these points, i.e., when 62 4 0 and P 4 0, in
which case r = 0 and r = —2P correspond to the outer
and inner horizons, respectively.

The extreme limit (P ~ 0) with the other parameters
finite corresponds to supersymmetric BH's with the sin-
gularity at r = 0. The singularity is null, i.e., r = 0
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is also the horizon, except when P = 0, in which case
the singularity becomes naked. The extreme limit (P ~
0) with IQI IPI, while keeping Pe ~ '~—:2IqI and

IIQI —IPIIe ' ' = 4IAI finite, corresponds to nonsuper-
symmetric BH's with the global space-time of extreme
Reissner-Nordstrom BH' s.

Thermal properties of solutions (10) are specified by
the 4-d space-time at the outer horizon located at r = 0.
The Hawking temperature [17] Ttt =

I r)„A(r = 0)I/47r is
given by

(iv) Nonsupersymmetric extreme BH's, i.e., I6zI
with (q, A) nonzero:latex The global space-time is that of
extreme Reissner-Nordstrom BH's with zero temperature
TH and finite entropy S. Extreme dyonic solutions of 5-d
KK theory [9] are obtained from this one by choosing an

SO(2) rotation angle, related to Q, q, and A.
This work is supported by U.S. DOE Grant No. DOE-

EY-76-02-3071, the NATO collaborative research Grant
CGR 940870, and NSF Career Advancement Award
PHY95-12732.

TH
47r(P Q)'l cosh6i cosh6z

[IQI cosh 6 —IPI sjnh 62]
4~(PQ)tt'zIQI cosh 62

(14)

As the boost parameter 62 increases the temperature
TH decreases, approaching zero temperature. In the
supersymmetric extreme limit and with zero P, the
temperature is always infinite independent of 6&. In the
nonsupersymmetric extreme limit, the temperature is zero.

The entropy [18] S of the system, determined as S =
1

4X (the surface area of the event horizon), is of the
following form:

S = 2~P(PQ)'l cosh6i cosh6z

2~P(PQ)tl IQI cosh 6,
[IQI cosh 6z IPI sinh 6z]'t' (15)

The entropy increases with 62, approaching infinity (fi-
nite value) as 6z ~ ~ (nonsupersymmetric extreme limit
is reached). In the supersymmetric extreme limit, the en-

tropy is zero.
We now summarize the results according to the values

of parameters 6z, P, and P.
(i) Nonextreme BH's with 62 4 0, P 4 0: The global

space-time is that of nonextreme Reissner-Nordstrom
BH s, i.e., the timelike singularity is hidden behind
the inner horizon. The temperature Ttt (entropy S) is
finite and decreases (increases) as 6z or P increases,
approaching zero temperature (infinite entropy). Note that
nonextreme BH's of 5-d KK theory belong to this class.
They are obtained from solutions (10) by performing an

SO(2) rotation on the (n + 1)th and (n + 2)th indices of
the corresponding matrix y, however, the corresponding
rotation parameter is related to 62.

(ii) Nonextreme BH's with 6q = 0 or P = 0: The
singularity structure is that of the Schwarzschild BH's,
i.e. , the spacelike singularity is hidden behind the (outer)
horizon. The tempterature Ttt (entropy S) is finite and
decreases (increases) as P increases, approaching zero
(infinity).

(iii) Supersymmetric extreme BH s, i.e. , 62 finite: For
P 4 0, the solution has a null singularity, which becomes
naked when P = 0. The temperature TH (entropy S) is
finite and becomes infinite (zero) when P = 0.
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