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Instabilities in Close Neutron Star Binaries
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We report on a new analysis of instabilities in close neutron star binaries based upon (3 + 1)
dimensional general relativistic numerical hydrodynamics calculations. When a realistic equation of
state is employed, orbit calculations for two 1.45MO neutron stars reveal surprising evidence that
general relativistic effects may cause otherwise stable stars to individually collapse prior to merging.
Also, the strong fields cause the last stable orbit to occur at a larger separation distance and lower
frequency than post-Newtonian estimates.
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Coalescing neutron stars are currently of interest for
a number of reasons. Several neutron star binaries are
known to exist in the Galaxy (e.g. , PSR 1913 + 16,
PSR 2303 + 46, PSR 2127 + 11C, PSR 1534 + 11 [1])
whose orbits are observed to decay on a time scale of
(1 —3) X 10 yr. It has been recognized for some time
[2,3] that the final orbits of such systems may produce
detectable gravitational radiation. This possibility has
recently received renewed interest with the development
of next generation gravity-wave detectors [4] such as
cryogenic bars or the Caltech-MIT LIGO detector and
its European counterparts. An event rate due to binary
neutron star coalescence out to 200 Mpc could be ~3/yr
[5]. It has also been proposed that such events could
account for the rate and energetics of observed gamma-
ray bursts [6].

For much of the evolution of a neutron star binary, the
system should be amenable to a point source description
using post-Newtonian techniques [7,8]. However, as the
stars approach one another the gravitational fields become
quite strong and hydrodynamic effects could become
significant. Indeed, it is expected that the wave forms
could become quite complex as the stars approach their
final orbit. This complexity, however, may be sensitive
to various physical properties of the coalescing system
[3] such as the neutron star equation of state. Hence,
careful modeling including nonlinear effects of strong
gravitational fields and a realistic neutron star equation
of state is needed as a foundation for extraction of the
information contained in the detected gravity waves.

To this end, in this Letter we report on the first
application of a fully relativistic method using a real-
istic neutron star equation of state to near final orbit
calculations for two neutron stars with a gravitational
mass of 1.45MO each. We find that the nonlinear strong
gravitational fields cause the last stable orbit to occur at a
somewhat larger separation distance and lower frequency
than that estimated using the (post)sIz-Newtonian approxi-
mation [8]. We also find the surprising result that the
strong fields may induce otherwise stable neutron stars to

collapse into black holes many orbits before they actually
merge. This finding could have a significant impact
on observed properties of neutron star binaries as they
approach coalescence.

Some preliminary discussion of the model employed
here has been reported previously [9] and a detailed
discussion of the method will appear in a forthcoming
paper [10]. Here we present a brief sketch of some
features relevant to the present discussion. We start with
the slicing of spacetime into a one-parameter family of
hypersurfaces separated by differential displacements in
timelike coordinates as defined in the (3 + 1) formalism
[11,12].

Utilizing Cartesian x, y, z isotropic coordinates, proper
distance is expressed
ds = (n —p; p')dt —+ 2p;dx'dt + @ B,jdx'dxj,

(1)
where the lapse function o. describes the differential lapse
of proper time between two hypersurfaces. The quantity

p; is the shift vector denoting the shift in spacelike
coordinates between hypersurfaces. The curvature of
the metric of the 3-geometry is described by a position
dependent conformal factor P times a fiat-space
Kronecker delta which requires

2nK;I = (D;Pi + DIP; —36) DkP"), (2)
where E;j is the extrinsic curvature with zero trace [12]
and D, are covariant derivatives. This conformally flat
condition on the metric is motivated both by the general
observation that gravitational radiation in most systems
studied so far is small [3,13], and the fact that conformal
fIatness simplifies the solution to the field equations. As
a third condition, we take the coordinate system to be
rotating in such a way as to minimize the matter motion
in the coordinate grid.

The implementation of this method means that, given
a distribution of mass and momentum on some manifold,
we first solve the constraint equations of general relativity
at each time for a fixed distribution of matter. We then
evolve the hydrodynamic equations to the next time step.
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Thus, at each time slice we can obtain a solution to
the relativistic field equations and information on the
hydrodynamic evolution. Information on the generation
of gravitational radiation can then be obtained from a
multipole expansion [10,14].

It is important to appreciate that at each time slice
a numerically valid solution to the field equations is
obtained. The hydrodynamic variables respond to these
fields. The only approximation is the neglect of an
explicit coupling of the gravity waves, which contribute
negligibly to the metric and stress energy tensor [10].

We reduce the solution of the equations for the field
variables @, n, and P' to simple Poisson-like equations
in Oat space. We begin with the Hamiltonian constraint
equation [12] which reduces to [10,13],

V P = —4~p). (3)

V (aP) = 4~p2, (5)

The source term is usually dominated [10] by the proper
matter density p, but there are also contributions from
the internal energy density F. , pressure P, and extrinsic
curvature. Thus we write

5

p W' + Z(l W' —r + 1) +
2 ' 16~

(4)
where W is a generalized Lorentz contraction and V =
1 + P/pe is an adiabatic index from the equation of
state. Similarly, the lapse function is determined from

p(3W —2) + E[31(W + 1) —5] + K;,K'~
16~

We use the momentum constraints [12] to find the shift vector which reduces to

2 iV p'= .
—V p +47rp3,

Ax' 3

p,' = [4n@'S, —4P'W'(p + 1~)]+ 1 Bln(n/@6) ( 6, 8 2P' + /3' ——~
g

/3"
4m Bx~ ( Bx~ Bx' 3 "Vx'

(7)

where 5; is the covariant momentum density.
To solve for the fIuid motions in curved spacetime

it is convenient to use an Eulerian description [10,15]
beginning with a perfect quid stress-energy tensor,

T~, = (p + F + P)U~U, + Pg~, . (9)
Our routines for evolving the hydrodynamics have been
well tested at the special and general relativistic levels
[9,10,16]. A key part of the calculations presented here
is the use a realistic neutron star equation of state.
Specifically, we use the zero temperature, zero neutrino
chemical potential equation of state from the supernova
numerical model of Wilson and Mayle [17]. In its
full temperature dependent form this equation of state
gives a good reproduction of the neutrino signal and
other observed properties from supernova SN 1987A.
The maximum gravitational mass of an isolated neutron
star with this equation of state is 1.55MO. This limit
roughly agrees with the upper limit of the smallest range
of neutron star masses which overlaps all observational
determinations.

The calculations reported here were performed on a
three-dimensional Eulerian grid of effectively 10 zones.
However, even with this many zones we have only about
15 zones in radius to represent each neutron star. As a test
of this zoning, a hydrodynamic calculation was made of a
single star using typical resolution in three dimensions.
This calculation was compared with a one-dimensional
spherical hydrodynamic calculation with fine zoning. For
the same baryonic mass, 1.59MO, the gravitational masses
agreed to 2/3%, i.e., yielding a gravitational mass of

1.45MO and 1.46M' for the 3D and 1D calculations,
respectively. This we take as indicative of the accuracy of
the calculated gravitational binding energy of the binary
system as well.

In this Letter we present calculations made at three se-
lected values of the orbital angular momentum with no
radiation damping of the orbits. The neutron stars were
chosen to be of equal mass and corotating initially. The
baryonic mass was selected so that in isolation each star
has a gravitational mass of 1.45MO. Although the calcula-
tions presented here ignore radiation damping, orbits with
radiation damping should follow a sequence of quasiequi-
librium configurations which closely match the equilibria
computed here. We use a multipole expansion [10,14] to
show that the radiation damping per orbit is small.

Initial conditions were obtained by placing two neutron
stars on the grid with a rotational velocity sufficient to
keep them in orbit and an initial "guess" density profile
from a solution to the Tolman —Oppenheimer —Volkoff-
like equation for two single neutron stars in isotropic co-
ordinates. The field equations were then solved and the
hydrodynamics evolved with viscous damping until equi-
librium was achieved. We follow the time evolution of
the system with constant angular momentum until it has
settled down. As the stars settle down the damping is
slowly removed. Once found, the equilibrium configura-
tion for one angular momentum could be used as an initial
condition for the next angular momentum.

Some parameters characterizing this binary at the
final time calculated for various angular momenta are
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TABLE I. Parameters characterizing the orbit calculations.
Note that f denotes the gravity wave frequency.

J (cm')

a.z. (M.)
M, (M, )
dp (km)

pmax (g cm )
~max

h r (cm)
F. (MG sec ')

j (cm)
I22 (cm~)
f (Hz)

Orbit
Sars

2.2 x 10"

0.088
1.4l 6

39.4
1.87 x 10'

0.440
1.90

1.03 x 10
0.016
1.23

1.19 x 10'"
410

Unstable
Unstable

3 x 1011

0.080
1.420

40.5
2.42 x 10"

0.379
2.05

6.76 x 10-'

0.0040
0.607

1.28 x 10'~
310
Stable

Unstable

2.7 x 10"

0.073
1.423

53.0
1.80 x 10"

0.463
1.84

9.60 x 10-'

0.0059
1.07

231 x ~0'"
265
Stable
Stable

summarized in Table I. The first calculation was made
with an orbital angular momentum of 2.2 X 10" cm .
The stars settled down into what appeared at first as a
stable orbit, but later (after about one complete orbit)
the stars began to slowly spiral in. For this system the
angular momentum was apparently not enough to support
the orbit. The stars were followed to a proper separation
distance dp = 9.4m, where m is the total gravitational
mass of the binary.

By the end of the calculation, the binding energy
B.E. was increasing and the separation dp decreasing
sufficiently rapidly that it could be concluded that no
stable orbit would result. Even so, the stars were still
quite far apart. The ratio of proper separation distance to
the single-star radius was dp/r ~ 4. At this distance, the
stars are still nearly spherical.

Although the stars were far apart, we note that the
central density had increased significantly. By the last
time calculated, the stars exceeded the critical density
for support against collapse. For our equation of state
the maximum proper matter density for a single stable
neutron star is p„;& = 1.7 && 10' gcm corresponding
to a maximum single neutron star mass of 1.55MO. The
maximum central matter density in the stars is given as
p,„„in Table I. Since the central density has continuously
increased for the stars, it seems likely that neither the
stars nor the orbit are stable for this angular momentum
as summarized at the bottom of Table I.

We have estimated the amplitude h and power in
gravity waves F based upon a multipole expansion [14]
the leading term of which is the mass quadrupole moment
(lz in Table I). Note that the energy radiated in gravity
waves per orbit is a negligible fraction of the binding
energy of the binary. Based upon the rate of angular
momentum loss, the calculations discussed here should
span a time frame of AJ/'J ~ 4 sec or ~500 orbits.

The next calculation was made with an angular mo-
mentum of 2.3 X 10" cm . The orbit now appeared sta-
ble (cf. Table I). However, after about one revolution the
central densities were noticed to be rising. By the end of
the calculation (after two revolutions) the central matter
density had risen to the largest value of the orbits studied
here, p „=2.4 X 10' g cm . At the same time the
lapse function decreased to o. ;„=0.38 and the confor-
mal factor increased to @ „=2.0. Thus, it appears that
neutron stars of this mass range and the adopted equation
of state may form black holes before their orbit becomes
unstable to plunge. For this orbit the stars are at a proper
separation distance of d~ = 9.7m, and still many orbits
from merging. However, the nonlinearities in the gravita-
tional field have pushed the stars over the critical density
for collapse.

A third calculation was made with the angular momen-
tum increased to 2.7 X 10" cm . The stars relaxed to a
stable orbit at a proper separation of d~ = 12.6m. The
stars also appeared to settle to a stable configuration. Al-
though the central density was slightly above the critical
density for nonrotating stars, in this case the corotating
stars were stabilized by their angular momentum.

It is of interest to compare the present results with
those obtained by a post-Newtonian treatment. Our
intermediate orbit (J = 2.3 X 10" cm ) appears on the
verge of the transition from steady inspiral to unstable
plunge. Therefore, it is convenient to compare our results
with the (post) ~ -Newtonian analysis of [7,8] of the inner
most stable circular orbit. We caution, however, that this
comparison is ambiguous as parameters can have different
meanings in the two formalisms.

In the post-Newtonian calculation of Ref. [8] the last
stable circular orbit for equal-mass binaries occurs for a
separation distance d = 6.03m in harmonic coordinates
(or -7m in Schwarzschild coordinates). The correspond-
ing circular gravity wave frequency is f = 1300 Hz for
1.45MO stars. In the results reported here, however, the
last stable orbit occurs at a proper distance of dp = 9.7m.
In the post-Newtonian regime, the gravity wave frequency
scales as f —(m/d) ~ . Thus, if the strong-field results
simply scaled as the post-Newtonian formulae, we would
have expected a gravity wave frequency which was a fac-
tor of -[(7/9.7) (1.42/1. 45)]3~z slower, i.e., f —770 Hz.
In fact we observe a gravity wave frequency which is
about a factor of two slower than that. This slower fre-
quency can perhaps be traced to the effect of the strong-
field metric coefficients, i.e., n and @ in Table I.

The combination of decreasing quadrupole moment and
slowly increasing frequency also leads to a net decrease in
the amplitude of the gravity wave signal (h r —f I
in Table I) as the orbit decays from J = 2.7 X 10'' to
2.3 X 10" cm . This is contrary to the increase expected
from post-Newtonian analysis.

Even though the stars are much farther apart, the
relativistic treatment gives a stronger gravitational binding
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energy for this system. Here we define binary binding
energy (B.E in . Table I) as the difference between the
total gravitational mass of the binary (2MG in Table I)
and the gravitational mass of two isolated stars. Whereas
the post-Newtonian ratio of binding energy to reduced
mass for the last stable orbit is B E /p. , .= 0.037, the
numerical calculation described here gives B E./p . =
0.11. Much of this difference is probably due to increased
binding energy of the individual stars. In our calculations
there is sufficient numerical dissipation (i.e., viscosity) to
accommodate the increased binding energy.

These calculations show two new results which to our
knowledge have not been reported previously. One is
that nonlinearities in the fully relativistic gravity of a
neutron star binary imply fields so strong that the stars
can become individually unstable to collapse into two
black holes. When or whether this instability occurs is
of course dependent upon the equation of state employed.
For the equation of state adopted here, this collapse is
observed to occur while the stars are still in a quasistable
orbit implying that there could be many orbits from the
onset of collapse to the time the stars actually merge.

This is an entirely new binary instability which, if cor-
rect, will have a significant impact on future studies of bi-
nary neutron star mergers and renders the two-black-hole
coalescence problem much more important. The possi-
bility of collapse to black holes many orbit periods before
coalescence may also have observational consequences not
only for gravity wave detectors, but in electromagnetic (ra-
dio, optical, x-ray, or 7-ray) bursts as well.

A second significant aspect of the present work is that
the binary orbit becomes unstable due to nonlinear effects
of gravity at a larger separation distance (a factor of
=1.4) and lower frequency (by a factor of —4) than that
derived from (post) i -Newtonian analysis. This lower
frequency is important, since it places the coalescence
frequency closer to the maximum sensitivity range of laser
interferometer gravitational wave detectors such as LIGO
[4]. Our estimate of the gravity wave amplitude near the
final orbit is h = 3.3 X 10 at 100 Mpc.

From the above discussion it is clear that further studies
are warranted, particularly a better determination of the
last stable orbit and the approach to this orbit. Work
along this line is currently in progress. There is also a
need to study orbits at larger radii to make a connection
to the post-Newtonian regime.
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