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Mean Switching Frequency Locking in Stochastic Bistable Systems
Driven by a Periodic Force
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The nonlinear response of noisy bistable systems driven by a strong amplitude-periodic force is
investigated by physical experiment. The new phenomenon of locking of the mean switching frequency
between states of a bistable system is found. It is shown that there is an interval of noise intensities in
which the mean switching frequency remains constant and coincides with the frequency of the external
periodic force. The region on the parameter plane "noise intensity —amplitude of periodic excitation"
which corresponds to this phenomenon is similar to the synchronization (phase locking) region (Arnold's
tongue) in classical oscillatory systems.
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The dynamics of noisy nonlinear systems show a variety
of nontrivial phenomena which have been extensively
studied during the last decade [1,2]. Among them the
resonancelike and synchronizationlike phenomena are of
great interest [3]. In particular, a great deal of work has
been devoted to the phenomenon of stochastic resonance
(SR) [4]. This phenomenon occurs in nonlinear systems
subjected simultaneously to external noise and periodic
force. The response of a nonlinear noisy system to a
small periodic excitation can be enhanced. It happens
most effectively for an optimal intensity of stochastic force
when the noise-controlled time scale (for example, the
mean transition time between two stable states of a bistable
system) coincides with the time scale of the periodic
force. Theoretical investigations (see references in [5])
have shown that the SR phenomenon can be correctly
described in terms of linear response theory (LRT) [6].

Stochastic synchronization has been observed in two
coupled bistable systems [7]. It was found that when the
strength of coupling achieves some critical value then the
stochastic hopping dynamics in the subsystems becomes
coherent. In Ref. [8] the resonance phenomena in glob-
ally coupled stochastic oscillators have been studied.

Nonlinear effects in stochastic resonance have been
studied in [9—14]. In [12] an analytic approach in
the framework of the adiabatic theory [15] has been
proposed. The generation of high-order harmonics has

been considered in [11]. In [9] a universal power
law decay of the spectral density has been found in
the weak-noise limit. Another nonlinear effect in SR,
noise-enhanced heterodyning, has been described in [10].
A new nonlinear effect in SR has been found and
explained theoretically in [14]: using the technique of
pulse sequences the existence of a second peak in the
dependence of the signal-to-noise ratio on the noise
intensity has been found for large enough amplitudes of
the periodic force.

In the present Letter we study another group of nonlin-
ear phenomena in periodically driven noisy bistable sys-
tems. Let us turn to the classical theory of oscillation. As
is well known, small periodic forcing of an oscillator leads
to the phenomenon of linear resonance: when the driven
frequency coincides with the natural frequency of the os-
cillator then the magnitude of the response of the system
is a maximum. The phenomenon of SR is similar to this
linear resonance. As distinct from ordinary resonance, the
natural frequency in the case of SR is a statistical quan-
tity and the phenomenon is observed via changes of this
noise-controlled quantity.

Another resonance phenomenon is observed in self-
sustained oscillators: the natural frequency of the oscil-
lator can be locked by an external periodic force. As a
result, regions of synchronization in the parameter space
of the systems appear. These regions are called "Arnold's
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tongues, " and the natural frequency of the oscillator is in
a rational relation with the driving frequency in these re-
gions. It is reasonable to try to find similar phenomena in
periodically driven stochastic bistable systems. Actually,
a bistable system driven by external noise can be con-
sidered as an analog of the self-sustained oscillator with
the natural frequency represented by the mean switching
frequency (MSF) between stable states. We set up the
hypothesis that in the nonlinear regime of operation of a
stochastic bistable system driven by a periodic force the
same regions where the MSF coincides with the frequency
of the driving force can be observed. Below we show that
this hypothesis fits experimental data.

As was mentioned above, the effects under considera-
tion are sufficiently nonlinear and therefore the existing
theories of periodically driven stochastic systems cannot
be applied. We choose physical experiment as a tech-
nique for the investigations. The two models we used are
the Schmitt trigger and an overdamped bistable oscillator.

The Schmitt trigger is an ideal two-state electronic
device demonstrating pure hopping dynamics. Using
this device stochastic resonance was first investigated
experimentally in [16]. A schematic diagram of the
Schmitt trigger system and description of its operation can
be found, for instance, in [5,15,16]. The application of the
adiabatic theory to this device has been made in [15]. The
ideal Schmitt trigger circuit driven by periodic force and
noise g(t) obeys the equation

y = sgn[yy —3 cos(2' fnt) —s (t)], (1)
where y is the parameter corresponding to the threshold
levels of the trigger.

The overdamped bistable oscillator simultaneously
driven by noise and periodic signal is described by the
Langevin equation

x = ax —bx + icos(2' fnt) + s(t), (2)
where a and b are parameters. In the absence of
noise bistability is destroyed for A ~ Vb = (4a /27b)'
The parameter V» is equivalent to the threshold level
of the Schmitt trigger. A detailed description of the
experimental investigation of this system has been given
in [17].

In our experiments we use quite the same schemes
as in cited papers. The Schmitt trigger which is just
an operational amplifier is subjected to a noisy signal
with cutoff frequency f, =100 kHz and , the periodic
signal. The amplitude of the periodic signal A in all
experiments is small enough not to induce switching of
the trigger without noise: A ~ V„where V, = 150 mV is
the threshold of the Schmitt trigger. At the output of the
Schmitt trigger system we have a dichotomous stochastic
process which can be characterized by the mean durations
of the upper state and lower state: T„, Tl. We calculate
these quantities using a computer connected via ADC with
the output of the system. The mean "period" of switching
is therefore

TS Ttk + Tl

In the frequency domain this quantity corresponds to the
mean switching frequency (MSF)

1

Tu + Tl
(4)
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FIG. 1. The measured MSF versus noise voltage for different
amplitudes of periodic signal for the Schmitt trigger: A =
0 mV (6), A = 60 mV ( ), and A = 100 mV (*). The signal
frequency is fo = 100 Hz, and the trigger threshold level is
V(

——150 mV.

In the absence of periodic force the MSF is fully
controlled by noise and is characterized by the exponential
Arrhenius law [2]

fI") ~ exp( —AU/D),

where AU is the barrier height and D is the noise
intensity. In the presence of periodic excitation the MSF
becomes a function of the parameters of the periodic
force.

The results of measurements of the MSF for the
Schmitt trigger are shown on Fig. 1 as a function of noise
intensity. In the absence of periodic excitation as well as,

for a weak periodic forcing the dependence of the MSF
versus noise intensity fits an exponential law. For a large
enough amplitude of the periodic force the exponential
law breaks down. It is seen that there is an interval of
noise intensities in which the MSF remains constant and
corresponds to the frequency of the periodic force f&~ The.
variations of the MSF in this region do not exceed ~0.5~k.
Therefore the mean switching rate between the two states
of the noisy bistable system is "locked" by the external
periodic force: in a certain region the MSF is equal to the
value of the driving frequency.

Making similar measurements for different values of the
amplitude of the periodic force we obtain the region on the
parameter plane "noise intensity —amplitude of the periodic
force" in which the MSF is equal to the frequency of the
periodic force within the limits of experimental accuracy
given above. These "synchronization" regions are shown
in Fig. 2 for several values of driving frequency fn The.
base of each of the regions determines the synchronization
threshold values A, h of amplitude modulation. Therefore
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amplitude depends on the signal frequency as well as on
the barrier height of the potential.
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