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Macroscopic Quantum Coherence and Quasidegeneracy in Antiferromagnets
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The semiclassical approach to macroscopic quantum coherence (MQC) neglects the intrinsic zero
point motion of a vector order parameter when symmetry is approximately unbroken in the ground
state. An exact treatment of MQC is carried out on the two-dimensional anisotropic Heisenberg
antiferromagnet to illustrate this effect. For small barriers, the order parameter tunneling rate is seen to
exhibit the energy scale of the massive rotator states which form the quantum counterpart of classical
long range Neel order. Based on these results, predictions relevant to mesoscale magnets are made.

PACS numbers: 75.60.Jp, 03.65.Bz, 76.20.+q

Macroscopic quantum coherence (MQC) is a phenom-
enon in which an object exists in a quantum superposi-
tion of macroscopically distinct states. In connection with
MQC, mesoscopic single domain magnetic clusters have
been the subject of a number of recent theoretical and
experimental investigations [1—6]. In the semiclassical
limit, the constituent spins in such a particle are consid-
ered to be rigidly coupled together and in the presence
of magnetocrystalline anisotropies, the order parameter
may "tunnel" back and forth between different orienta-
tions. The central prediction of spin MQC theory is an
exponential dependence of the order parameter tunneling
rate upon the square root of the anisotropy strength K
(which may be thought of as the barrier height) and the
number of spins N; for an antiferromagnet with exchange
constant 1,

I = too(2NS K/J)' exp( —2NS K/J), (1)

where the energy scale coo = JJK [2]. Although consid-
erable experimental support exists for (1), fitting expres-
sions of this type to experiment leads to the conclusion
that K is O(10 —100) times smaller than expected from
nominal material parameters [4]. Even more perplexing
is the conclusion, based upon widely accepted arguments,
that decoherence due to nuclear spins [7,8] would com-
pletely suppress MQC at the scale observed in recent ex-
periments on ferritin by Awschalom.

Because of these and other difficulties in interpreting
MQC experiments [9,10], it is important to reexamine the
MQC phenomenon from first principles and try to figure
out where —if at all —the theory has gone astray. The
predictions of MQC theory are based on an instanton ex-
pansion of a continuum action such as the nonlinear o
model about a spatially uniform saddle point. Like the
ferromagnet, the d ~ 2 nonlinear o model has broken
symmetry in the ground state, even in a finite geome-
try. In contrast, the ground state of the Heisenberg an-
tiferromagnet Hamiltonian (HAFM) has long range order
without broken symmetry [11,12], and the order parame-
ter possesses low energy dynamics which are independent
of a sufficiently small imposed barrier. MQC of a vector

order parameter may be understood from such a picture-
one in which the order parameter is spatially correlated
but strongly orientationally delocalized. Thus the starting
point of the present study is a finite cluster spin S = 1/2
HAFM with an appropriate magnetocrystalline anisotropy
term. These are the first exact quantum many body calcu-
lations of an MQC effect and are also important in that
they address the suitability of instanton calculations in
many body Hamiltonians, questioned by Leggett [13] and
others.

We have performed exact diagonalizations of the
HAFM on two-dimensional square and tilted lattice
clusters. We find expression (1) is satisfied for large
instanton action, St = 2NS QK/J ) S, (—12). How-
ever, for small barriers (St ( S,)—although no simple
analytic expression exists —we find that the tunneling
rate is well described by the approximate expression

I —co„,exp( —ct N S K/J), (2)

H= JQS; Si—

Strong numerical evidence exists to support long range
order of the staggered magnetization @~

= (—1)'SJ in
the pure 2D HAFM (K = 0) at zero temperature [12].
The quantity of interest for MQC is the staggered order
parameter tIi =—g1 pj. In the expression above, the 2D

where co«, = P J/N is the energy scale of the quaside-
generate joint states (QDJS) [11,14] that form the quan-
tum counterpart of long range Neel order. In contrast,
semiclassical tunneling rates reAect the spin gap energy
scale coo —QJK Finite size scalin.g is used to numer-
ically determine the universal function I (J/N, St) that
spans large and small barrier behavior. Most importantly,
the delocalized picture leads to much milder conclusions
about the effects of coupling to environmental spins than
the semiclassical theory of MQC.

We have chosen the anisotropic spin-1/2 HAFM in
two dimensions because it is perhaps the simplest model
containing the necessary ingredients for MQC:

N q,.
~ P(-I)'S I. (3)
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FIG. 1. The dynamical correlation function c(cu) of the 16-
site HAFM for two anisotropies, IC = 0.16 (solid circles) and
K = 0.48 (open circles) showing resonances at I' = 0.409
and 0.181, respectively. Broadening has been set by 6 =
0.01. Inset: full scale plot of spectrum showing higher order
resonances (6 = 0.001). The largest secondary peaks have
about 1/100 the spectral weight of the primary peak.

HAFM is modified by a uniaxial anisotropic term to
bring about the tunneling of 4 between the configurations
iII = ~tI~o [15].

According to the theory of MQC, the real time dynam-
ical correlation function c(t) = (OliIi(t)tIi(0) l0), where
4(t) is the usual Heisenberg operator, exhibits an oscilla-
tion c(t) = co sin2vr I t at the tunneling frequency I . The
fluctuation dissipation theorem relates the Fourier trans-
form c(~) to the dynamical susceptibility y(cu) —the ex-
perimentally relevant quantity. For a lattice calculation,
standard techniques based on the Lanczos algorithm are
available to calculate the complex frequency propagator

Ga (z) —= (01~'
1

(z —H+ Z, )
4 l0),

from which the dynamical correlation function is obtained
by an analytic continuation: —sic(cu) = G@(cu + i 6)

The Lanczos algorithm was used to diagonalize the
Hamiltonian (3) and obtain the ground and first excited
state energies and many body wave functions on 8, 10,
16, and 18 site lattices with periodic boundary conditions.
All energy differences were obtained to a high precision
AE/E —O(10 ' ). The values of K/J were varied over
a range to study the crossover from the extreme quantum
limit to the semiclassical limit, K —0—1.0 in most cases.
Figure 1 shows the results of two typical calculations of
c(cu). The low frequency resonance at I results from
the coupling of the ground state l0) to the first excited
state l 1) through 4. Even though total spin is not a good
quantum number once K is nonzero, states l0) and ll)
may be thought of as the perturbed singlet and triplet
levels, where l0) and ll) differ in the symmetry of the
admixture of the two Neel amplitudes. [For lattices of
size N = 4k (N = 4k + 2), l0) (ll)) is the symmetric
admixture and ll) (l0)) is the antisymmetric admixture
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FIG. 2. Logarithm of the tunneling rate I showing exponen-
tial behavior in K within the delocalized regime of small in-
stanton action (SI ( S, —12).

with respect to sublattice exchange. ] It is seen that with
increasing K, I shifts to lower frequency as expected.

Figure 2 shows the behavior of the tunneling rate I with

varying lattice size and anisotropy K A quasilinear regime
extending from K = 0 is seen, indicating an exponential
dependence of I upon K over about two decades in I /J.
We denote this regime the delocalized regime (as opposed
to the semiclassical regime corresponding to large St). To
obtain the dimensionless constants n and P, finite size
scaling is employed. The prefactor of the exponential
cu„„, is obtained by looking at the N dependence of I at
K = 0. This is simply the energy gap E& —Eo in the
absence of anisotropy, and it is shown plotted versus 1/N
in the inset of Fig. 3. The prefactor cu„„= PJ/N with

P = 7.6. As explained later, this expression refiects the
energy scale of the QDJS. To determine n, we have
computed the slopes of the ln(I /J) ~ K data at the K = 0
intercept. These slopes are plotted in Fig. 3. It is seen
that the slope is proportional to N in agreement with

Eq. (2), and we obtain the approximate result for small S&.
I = PJ/N exp( —n2N2S2K/J), where n = 0.2.

When the instanton action St = 2NS QK/J exceeds
S, = 12, the behavior of the tunneling rate crosses over
to the semiclassical regime governed by expression (1).
Calculations have been carried out to Sq —26 to illustrate
this crossover. Figure 2 shows an upturn in lnI for
K/J ) 1.5. Figure 4 shows the same data plotted as a
function of the instanton action, SI in an N-independent
way (explained below). The linear regime, for large S&,
confirms the semiclassical expression (1) rather well [16].

To gain insight into the small barrier limit it is
useful to consider how symmetry breaking occurs in
an antiferromagnet. The ground state of the HAFM is
a singlet S = 0, and, therefore, any vector observable
including the order parameter N must vanish. The order
parameter is spatially correlated over the cluster but
orientationally delocalized. The symmetry is ultimately
broken because a set of NS eigenstates of S become
quasidegenerate for large ¹ a small perturbation may
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SE' = J/N —(K/N) t(lie'I l) —(ole'10)] (4)

to first order. Because the 2D HAFM exhibits long
range order at zero temperature, limIv (p~4 ~p)/(NS)
is a constant independent of N and S, where ~p) is
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FIG. 4. Scaled tunneling rate versus the instanton action
SI showing universal trend (same symbols as Fig. 2). The
crossover to semiclassical behavior appears to occur at SI =
12. Experimental data from Ref. [6] labeled by cluster size N
Shown in the inset are the finite size dependences for three
different anisotropies: K = 0, 1, 2.

FIG. 3. Finite size scaling of the exponent of expression
(2) obtained from the slopes of linear fits to the data of
Fig. 2. The tunneling rate is seen to scale as exp( —cN2)
rather than exp( —cN) as predicted by the WKB approximation.
Inset: Sublattice rotation rate in the absence of anisotropy
demonstrating that the energy scale of the QDJS is proportional
to N '. (Points at N = 20 and N = 26 of inset are from
Ref. [12], remaining points are from present work. )

lift this degeneracy resulting in an admixture of states
that localize IIi within a solid angle of size O(1/N)
[11]. These states, the QDJS, are correspondent with
the states of a massive rotator, whose moment of inertia
is proportional to N/J [11]. The energy gap hE =
F~ —Eo between the S = 0 and S = 1 levels is therefore
proportional to J/N, in agreement with the finite size
scaling demonstrated in Fig. 3.

Recalling that the primary resonance occurs at an energy
AE, we now consider how AE evolves as K is increased
from zero. Treating the anisotropy term of (3) as a
perturbation yields

(0) or (1). Defining such a constant n =— [(1(III )1)—
(0~4 ~0)]/pN S we then obtain

AE' = (PJ/N) [1 —n N S K/J]. (5)

Expanding (2) to first order in K, it is seen to agree with

(5). Although Eq. (2) is a good approximation in the in-
termediate Sq region, we can connect the two extremal re-
sults, Eq. (1) and Eq. (5), using finite size scaling. From
Eq. (5) it is seen that the small barrier behavior of Fig. 4
must be described by a universal (dimension dependent)
function of SI. Rewriting the semiclassical expression (1)

3//2
I = (J/N)SI exp( —SI), it is also seen that the large bar-
rier behavior of Fig. 4 must be a universal function of SI.
As shown in Fig. 4, the succession of lattice sizes appears
to converge as expected, resulting in a curve that depends
only upon the instanton action Sq and not upon N explic-
itly. By comparison to 1D spin chains with integer spin,
we conclude that this curve depends only weakly upon the
spatial dimension [17]. The self-consistency of perturba-
tion theory leads to the condition PKNn S ~ PJ/N,
and, therefore, S2 = 1/n2 —25 provides an estimate of
the transition point between delocalized and semiclassical
behaviors.

We now turn to experimental signatures of MQC. Garg
[7] and Prokof'ev and Stamp [8] have introduced argu-
ments (but based upon semiclassical notions) showing that
the prospects for MQC in single domain magnets are ex-
traordinarily unlikely. In the dominant mechanism of nu-
clear spin decoherence, the local hyperfine coupling of the
moments, Hhr = —A P I j S&, introduces a fiuctuating
bias in the double well potential for the tunneling spins
and causes strong decoherence.

In the delocalized limit, a very different conclusion is
reached. We treat Hhf as a perturbation and calculate its
effect on each degenerate set of the combined QDJS and
nuclear spin systems. This procedure is justified as long
as the energy shifts are smaller than I'. The low energy
spectrum of the unperturbed system is described by a de-
generate set of states

~ p)~(I/}), where p = 0, 1 refers to
the ground and first excited states of the electronic sys-
tem (the perturbed singlet and triplet levels) and /II~} is
the set of possible nuclear spin configurations. The de-
generate ground state, ~0)~tI/}), has S, = 0, and noting
that 4 only couples states with AS, = 0, it is only nec-
essary to consider the S, = 0 elements of the first excited
state manifold. In this case, it is possible to show that the
first order corrections vanish, ((I/}((p(Hhr)p)~(I, })= 0,
due to the symmetry of the electron spin wave func-
tion under sublattice interchange. The second order cor-
rections involve an intermediate state of energy O(J) in

which a spin flip has been exchanged between the nuclear
and electronic systems. In ferritin, taking A —50 MHz
and J —6 X 10'o Hz (determined below), the resulting
shift in I is O(A /J) —4 X 10 Hz. Thus the spectral
weight concentrated in the unperturbed single resonance
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FIG. 5. Finite temperature dynamical susceptibility g(cu) of
the 10-site lattice shown for two anisotropies K = 2J (a) and
IC = 0 (b). Resonances are artificially broadened.

is distributed in a multiplet with a width of about 40 kHz;
MQC should be observable down to the 1 MHz range.
Although particles of this size are semiclassical, exact di-
agonalizations of HAFMs coupled to nuclear spin degrees
of freedom show that the perturbative treatment of nuclear
spins works well even for clusters in the semiclassical
regime (St —10). In fact, our results are in disagreement
with the conclusions of Refs. [7,8], regarding coupling to
environmental spins in the semiclassical regime. Presum-
ably much stronger anisotropy is needed to bring about
the conditions consistent with their treatment.

A quantity of considerable experimental interest is the
quantum crossover temperature. According to the semi-
classical theory of MQC, a resonance peak should emerge
below a temperature T* —QJK, the temperature at which
thermal activation over the barrier has a comparable rate
to quantum tunneling. When 51 —5„ the order param-
eter is delocalized and this definition of the crossover
does not hold. We have examined the temperature de-
pendent dynamical susceptibility ~"(to, T) on the 10-site
lattice for three anisotropies, K = 0, J, 2J, and a range of
temperatures. In Fig. 5(a), the peak at to —0.1 (easily
seen for T = 1.0, 1.4) is the MQC resonance for Jt = 2J.
When K is reduced [Fig. 5(b)], the onset temperature of
the resonance appears unchanged, rather than reduced. In
the small barrier limit, the level spacing dictates T* and
therefore, in experiments in which the particle size is var-
ied, we predict T* ~ 1/N for particles in the delocalized
limit. MQC predicts that T* has no N dependence.

In the Awschalom experiments on ferritin particles,
resonances attributed to MQC for the four particle
sizes studied were observed at I'&ono = 1.6 X 10 Hz,
I 2ppp

= 7.8 X 10 Hz, l 3ppp
= 5.6 X 10 Hz, and

I'4soo ——9.5 X 105 Hz, where the subscript N, „& refers
to the number of spin-5/2 Fe atoms in the particle. The
experimental widths are -50 kHz, consistent with our
estimate. From these data, K and J may be determined by
comparison to the universal curve approximated by finite
size scaling. lnI N is plotted versus N in Fig. 4. The

experimental anisotropy ratio, conventionally defined to
be 2KS /J, is estimated from the horizontal scale factor
in Fig. 4 to be -1.5 X 10 5. A value of the exchange
constant J —6 X 10' Hz is obtained from the vertical
scale factor. This anisotropy ratio is larger and somewhat
more realistic than a previous estimate of 2.7 X 10 in
Ref. [4]. In future experiments on smaller clusters it will
be interesting to see if the tunneling rate follows the small
W behavior anticipated by Fig. 4.
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