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Theory of the Resonant Neutron Scattering of High-T, Superconductors
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Recent polarized neutron scattering experiments on YBa2Cu307 have revealed a sharp spectral peak at
the (7r, 7r) in reciprocal lattice centered around the energy transfer of 41 meV. We offer a theoretical
explanation of this remarkable experiment in terms of a new collective mode in the particle particle
channel of the Hubbard model. This collective mode yields valuable information about the symmetry
of the superconducting gap.

PACS numbers: 74.72.Bk, 61.12.Bt, 61.12.Ex

Recently, both unpolarized and polarized neutron
scattering experiments have been performed on the
YBa2Cu307 high-T, superconductors [1—3]. In par-
ticular, the polarized neutron experiment [2] shows an

extremely sharp spectral feature in the spin flip channel.
This feature is centered around (n, 7r) in reciprocal
space, and peaked at 41 meV with a width narrower than
the instrumental resolution. This feature also has an
interesting temperature dependence. In the experiment by
Mook et al. [2], while it exists above the superconducting
transition temperature of T, = 92.4 K, its intensity scales
like the superfluid density below the transition. More
recently, Fong et al. [3] performed detailed spin unpo-
larized neutron experiments with a careful subtraction of
the phonon background. They found that the 41 meV
mode disappears above the superconducting transition
temperature.

In this Letter, we offer a theoretical explanation of
this remarkable experiment. We first show that for a
general class of tight binding Hamiltonian, including the
Hubbard and the t-I model, there exist well-defined
collective modes in the particle particle channel centered
around momentum (7r, 7r). The spin quantum number of
this excitation can be either a singlet or a triplet. The
singlet excitation has been discussed by Yang [4] and
one of us [5], and is in fact an exact eigenstate of the
Hubbard model. Normally, collective excitations in the
particle particle channel are inaccessible experimentally.
However, one of us [5] argued that if the ground state
of the model in consideration is superconducting, one can
couple to it through a particle hole excitation, because
the BCS condensate is a coherent mixture of particles
and holes. Based on this consideration, one of us [5]
predicted a possible new collective mode of the high-T, ,

superconductors. It is a spin singlet excitation peaked
at (vr, ~), has a well-defined energy of U —2p„, and
its intensity scales like the superfluid density. Possibly
because it is hard to distinguish from other excitations
in the system, this mode has not yet been detected
experimentally.

However, the basic arguments can be easily generalized
from the singlet to the triplet case. Besides the above

mentioned collective mode in the singlet particle particle
channel, there also exists a well-defined collective mode
in the triplet channel near total momentum (7r, m). This
is true for a large class of tight binding models, such as
the Hubbard or the t-J model. The energy spectrum of
a noninteracting pair of particles or holes generally con-
sists of a continuum labeled by their relative momentum.
However, for tight binding models, this continuum col-
lapses to a point where the total momentum of the pair is
(~, ~r) (see Fig. 1).

A triplet pair generally has a repulsive interaction when
placed on the neighboring site. Because of the collapse
of the particle particle continuum, this repulsive inter-
action leads to an antibound state near total momentum
(7r, 7r, .. .) in any space dimensions (see Fig. 1). This an-
tibound triplet state manifests itself as a collective exci-
tation of the many-body system, or as a pole in Green's
function of the particle particle channel. Most physical
probes do not couple to this channel. However, if the
model in consideration is superconducting (which is an
assumption of our theory), then a spin Ilip scattering of
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FIG. 1. The energy spectrum along the (vr, ~) direction. The
dots correspond to the antibonding state and the solid line
is the edge of the continuous spectrum. Here the numerical
calculations were done for 1 = t and n = 0.85. As 6 we
denoted 7r/50
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the neutron can couple directly to the triplet particle part-
icle excitation. Physically, this process is nothing but the
spin Hip scattering of a Cooper pair in the BCS condensate.
Since the Cooper pair in the high-T, materials is a spin
singlet with total momentum zero [6], therefore a spin flip
scattering of the Cooper pair necessarily creates a triplet
state. The orbital angular momentum or the parity selec-
tion rule forbids such a transition if the momentum loss
of the neutron is zero, on the other hand, it can be shown
simply that the matrix element of this coupling is maximal
when the momentum loss of the neutron is at (qr, qr).

Based on the above reasoning, we shall interpret the
sharp spectral feature observed in the polarized neutron
experiment in terms of the triplet collective mode in the
particle particle channel. We begin with some analytic
calculations of the properties of this collective mode and
its contribution to the dynamical spin-spin correlation
function. Subsequently, we compare our predictions with
a number of characteristic features of the resonance
observed in experiments.

Our antibound state is different from the excitons of
a superconductor considered by Bardasis and Schrieffer
[7]. These excitons form because of an attractive poten-
tial in a given angular momentum channel, and they exist
inside the superconducting gap and near total momentum

q = 0. The energy of the exciton mode has a tempera-
ture dependence similar to the superconducting gap, and
would approach to zero near the superconducting transi-
tion, whereas the energy of our mode does not depend
significantly on temperature. Our model is also differ-
ent from the magnetic susceptibility in the superconduct-
ing state computed using the random phase approximation
[8], since it involves multiple scattering in the particle hole

channel. More recently, Bulut and Scalapino [9] consid-
ered a model of the bilayer superconductors and argued
that a dynamic nesting from the bonding to antibonding
Fermi surface could give rise to a collective resonance at
(7r, qr). Our main difference lies in the fact that their reso-
nance is in the particle hole channel and as such it can exist
well above T, . The bilayer band structure plays a crucial
role in their model, while it is irrelevant in our case.

We consider the following model defined on a two-
dimensional square lattice:

= —tPc, cj + JQS; 5,
)

+ Ugn;tn;t —p, c; c;

In the limit U ~ ~, we recover the t-J model. On
the other hand, if we keep U small, we can regard the
above model as an effective Hamiltonian of the weak
coupling Hubbard model, where the J term arises from the
paramagnon interaction on the nearest neighbor sites. To
study the spectrum in the triplet particle particle channel,
we consider the operator

Oq = ~ fq(p)cp+qtc pt, (2)

which describes a pair of particles with center of mass
momentum q and relative momentum p. The equation of
motion for this operator is given by its commutator with
the Hamiltonian, [9f,Ot]. If we factorize the resulting

commutator in terms of O~ and the expectation values of
the density nz, we obtain

[M, Oq] = g(ep+q + e p)fq(p)cp+qt pl + 2(Unt —p)Oq + —gcp+qt pl
—gfq(p')

/ /
3Jx [n(p —p ) —n(p + P + e)](I —npl+qt —n prt)

— fq(P) p+qt8

1
where n = ~ gk nk is the average density of electrons
with spin cr, N is the total number of lattice sites, and

rt(p) = g; exp[ip . a] is a geometrical factor coming
from the summation over the nearest neighbors. In this
equation, the first term describes the kinetic energy of the
pair of particles in consideration. For tight binding mod-
els with nearest neighbor hopping, et, = —2t(cosk, +
cosk~). In this case, the kinetic energy of the pair van-
ishes when the total momentum q = (7r, qr). The second
term describes the Hartree interaction of the spin up pair
with the average density of the down spins in the back-
ground and the chemical potential energy of adding a pair

of particles. In the large U limit, the leading contribution
to the chemical potential is given by Un/2. Therefore,
the second term cancels in the leading order in U and
reaches a finite limit as U ~ ~. The third term gives the
multiple scattering of the particles with each other on a
restricted phase space due to the filled Fermi sea. The
last term describes the Fock self-energy of the quasiparti-
cles. The method of factorizing the operator equation of
motion is equivalent to the T matrix approximation in the
diagrammatic calculations; it is exact in the low density
limit. The collective mode for the triplet particle particle
excitation is obtained by equating the right hand side of
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(3) to Eq 0, the resulting eigenvalue equation is given by

J 1 ~ sin(p ) sin(pp)zpq
2 N „E—Apq

with n and P being x or y, z„q = 1 —
nq/2 p

— nq/2+p
and Apq: eq/2 p+—eq/z+ p.

It is straightforward to see that the last equation has two
discrete eigenvalues, they correspond to the bonding and
antibonding wave functions f(—l(p —2) ~ sin(p, ) ~

q

sin(p~). It turns out that the bonding combination is
very close to continuum and this mode exists only in a
very small region of the q space. So, in the future, we
will consider only the antibonding wave function whose
energy is given by

»n'( p. ) (1 —
nq/2 —pt nq/2+ pt)

N „E + 4t[cos(p, ) cos( 2" ) + cos(pY) cos( ~" )]
'

(5)

where t = t + (3J/4N) gp nptcos(p, ) and Eq = Eq +
2(Unt —p, ). The above eigenvalue equation can easily
be solved numerically, and the dispersion of the collective
mode is shown in Fig. 1. t is basically the renormalized
hopping matrix element of the quasiparticle. The range
in momentum space over which the collective mode ex-
ists depends on the ratio of J/t. A number of numerical
calculations indicate that the quasiparticle bandwidth is of
the order of J [10]. Here we take a semiphenomenolog-
ical approach and choose t rather than t as a free param-
eter. For a ratio of J/t = 1, and n = 0.85, we see that
the collective mode exists over 7r/50 of the momentum

space. At q = (7r, 7r) the energy of the mode is

J( 2
E = —!1——Pn cos p,2 ( N

In the experiments with the polarized neutron scattering
one measures the dynamic spin-spin correlation function

s(q, ~) = g I (n I sqt I o) I
'~ (~ —~.p),

where
I 0) and I n) are the ground and excited states of

the system and S = g„c„+ tcpt. Using the operatort

equation [9f, Oqt ] = E Ot we can construct a class
of approximate excited states of the Hubbard Hamiltonian
as I n) = ~ Oqt I 0), where 1/3Vq is a normalization
factor. The same operator equation for Oq shows that

Oq I 0) = 0 when the system is less than half filled.
With these relations, we can calculate the contribution of
this approximate eigenstate to S(q, cp) at zero temperature:

s, (q, ~) =,(o I o;s,' I o) I'a(~ —E;) + p1

q n'

, (o I [o;,st]
I o) I

'a(~ —E;) + p,1

n'

(g)

where g„denotes the contribution from states other than
0 t

I 0), and we used the fact that Oq I 0) = 0 to
replace the product of two operators by their commutator.
Evaluating the commutator we find the contribution of our

!

collective mode to the density density correlation function:

sp(q, cu) = 1
(o I 2+ fq (p)c ptcp&I0)

q P

Z„fq (p)~p/2Ep '

yp Ifq (p)I (1 np$ np+qt)

B(co —E )

The overlap matrix element is finite for d wave pairin-g
in the ground state only. For the momentum transfer of
Q = (qr, qr) the wave functions have an extremely simple

(—)form fg (p) = cos(p ) —cos(p, ), and one can see that
the numerator of (9) reduces to the BCS self-consistency
equation. Also, close to half filling the denominator of (9)
is equal to ~ (M —N)/M, where M is the number of sites
and% is the number of electrons. Finally we have

16 50 M (co

X $(co —Ep), (10)

where the Boltzmann factor takes care of the finite tem-
perature in spin-spin correlation functions. One can eas-
ily see, though, that the main temperature dependence of
S(q, co, T) comes from Ap(T). The spectral intensity is

simply proportional to the BCS order parameter or the su-

perfluid density. This is so because the BCS order parame-
ter provides the coupling from the particle hole channel to
the particle particle channel [5]. This extra spectral weight
at energy Eq is transferred from the low energy sector,
since the singlet BCS pairing removes the low energy spin
fluctuation. Our theory is consistent with the fact that the
41 meV peak intensity seems to scale with the superAuid
density below T„ in agreement with the experimental re-
sults obtained by Fong et al. [3]. We can see that expres-
sion (10) gives a linear dependence of the intensity of the
peak on doping. It comes from the proportionality of the
order parameter to the density of holes in the t-J model
and an extra factor M/(M —N) due to normalization.

We also note that our calculation is not fully self-
consistent, since the factorization of the equations of
motion is taken with respect to the normal state !0).
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We have performed the fully self-consistent calculation
using the equations of motion method first developed
by Anderson [11], where all expectation values are
taken with respect to the superconducting state. We
find the collective mode still exists and is not changed
significantly from the simple calculation presented here.
The details of the fully self-consistent calculation will be
presented in the longer version of this paper [12].

All the above discussions were restricted to the two-
dimensional CuO plane, which we model by the two-
dimensional Hubbard model. However, it can be simply
generalized to three dimensions. If one takes a three-
dimensional Hubbard model, one finds that the collective
mode exists near (vr, n, m. ) rather than (7r, 7r, 0). This is
consistent with the experiment where the third component
of the momentum transfer is also ~.

The fact that the particle particle collective mode
always exists at (vr, n, . . .) is a special property of the
tight binding model on a bipartite lattice. How would a
next-nearest neighbor hopping term change the results?
In this case, Eq. (4) still holds but with the dispersion
relation now given by

Et. = 2t(cosk~ + coskY)

2t [cos(k» + ky) + cos(k~ ky)],

where t' denotes the amplitude of the next-nearest neigh-
bor hopping. It is easy to see that the antibonding state
E always exists, while there is a critical coupling t„=
1.2 && 10 1 for the bonding state, so that for t' ~ t,'„ it
ceases to exist at (vr, 7r). In real experiments t' and 1 are
of the same order of magnitude, therefore, one can safely
conclude that the bonding state disappears into the contin-
uum. Below the superconducting transition temperature,
the intensity of the antibonding state as measured in the
neutron scattering experiment is proportional to

where fq (p —q/2) ~ sin( p, ) —sin( p~).
(a)

From Eqs. (9) and (11),we see immediately that the in-

tensity is nonvanishing if and only if the gap symmetry is
of the d-wave type. We therefore argue that the existence
of the neutron resonance determines the symmetry of the
pairing gap of the high-T, superconductors to be of the
d-wave type, consistent with the theories where pairing
interaction arises from the spin Iluctuations [13—15]. It
could also be consistent with more exotic possibilities of

2 —y2 + i d,Y pairing symmetry [16].
We conclude that the basic features of the observed

polarized neutron scattering experiment can be explained
in terms of a new particle particle collective mode in the
Hubbard model. The energy of the mode at (~, vr) is
given by Eq. (6) in the case of t' = 0, and is basically
a fraction of 1, which can be easily 41 meV. This

formula also predicts that the mode energy should scale
like 1 —n, and should be lower for underdoped systems.
The mode is centered around (7r, 7r, ~) for two different
reasons, both because the particle particle continuum
at this momentum is minimal so that the antibound
state could exist and because of the conservation of
angular momentum for exciting a singlet Cooper pair to
a triplet state. This is exactly the momentum transfer of
the excitation observed in experiment. We predict that
similar modes should exist in other high-T, materials
as well, at the commensurate momentum (vr, 7r, 7r).
The intensity of the mode scales with the superfluid
density because the BCS pairing amplitude is involved in
converting a particle hole pair into a particle particle pair.
The antibonding collective mode only has an overlap with
the d-wave order parameter, and we conclude that the
experimental observation of the collective resonance in
the neutron scattering experiment can only be consistent
with the d-wave symmetry of the pairing gap.
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