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Ensemble Density Functional Theory of the Fractional Quantum Hall Effect
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We develop an ensemble density functional theory for the fractional quantum Hall effect using a
local density approximation. Model calculations for edge reconstructions of a spin-polarized quantum
dot give results in good agreement with semiclassical and Hartree-Pock calculations, and with small
system numerical diagonalizations. This establishes the usefulness of density functional theory to study
the fractional quantum Hall effect, which opens up the possibility of studying inhomogeneous systems
with many more electrons than has heretofore been possible.

PACS numbers: 73.40.Hm

The fractional quantum Hall effect (FQHE) is mani-
fested in a two-dimensional electron gas (2DEG) in a
strong magnetic field perpendicular to the plane of the
electrons [1]. The effect is due to the electron-electron in-
teractions, which cause a downward cusp in ground state
energy as a function of filling factor v = 2vrlttn at cer-
tain rational fillings v = p/q. Here Ett = Qhc/eB is the
magnetic length, B the magnetic field strength, and n the
electron density. These downward cusps give rise to an
energy gap, and so for these values of v, the ground state
of the system is an incompressible liquid. Experimen-
tally, FQHE systems are accessible in strip geometries,
Corobino geometries, and more recently in quantum dots
[2,3], with as few as =50 electrons, as well as wide-well
heterojunctions and double layer systems. Theoretically,
different aspects of FQHE systems can be modeled by
Laughlin's wave function [4], by Hartree-Fock [5,6] or
composite fermion Hartree [7,8]; by semiclassical meth-
ods [9—11], by field theoretical approaches [12], which
also exist for the edge excitations on the boundary of
FQHE systems [13], and by exact numerical diagonal-
izations. At the present, numerical diagonalizations are
limited to systems with of the order of 10 electrons. It is
highly desirable to have a computational approach which
accurately treats inhomogeneous systems with the order
of 10 —10 electrons. One such approach, which is in
principle valid for any interacting electron system, is the
density functional theory (DFT) [14—16].

We have developed an ensemble DFT scheme within
the local density approximation (LDA) for the fractional
quantum Hall effect, and applied it to spin-polarized cir-
cularly symmetric quantum dots [17]. The results are in
good agreement with results obtained by semiclassical [9—
11], Hartree-Fock [5,6] (for cases where the correlations
do not play a major role) or exact diagonalization meth-
ods [18]. Our calculations show that the exchange and
correlation effects are very well represented by the LDA
and that our approach provides a computational scheme
to model large inhomogeneous FQHE systems. We note
that there exist previous formal DFTs for strongly corre-
lated systems, in particular for high-temperature supercon-

ductors [19], and DFT calculations of high-T, materials
[20] and transition-metal oxides [21]. Ferconi, Geller, and
Vignale [11] have also recently studied FQHE systems
within the DFT using an extended Thomas-Fermi approx-
imation, including a LDA for the exchange-correlation en-
ergy. However, ours are, to the best of our knowledge, the
first practical DFT-LDA calculations of a strongly corre-
lated system in strong magnetic fields, and demonstrate
the usefulness of the DFT-LDA in studying large inhomo-
geneous FQHE systems.

In typical DFT calculations of systems of N, ~
elec-

trons, the standard Kohn-Sham (KS) scheme [22] is
implemented, in which the particle density n(r) is ex-
pressed in terms of a Slater determinant of N ~ N, ~ KS
orbitals P (r). These obey an effective single-particle
Schrodinger equation Huff/ = e f, which is solved
self-consistently by occupying the N, &

KS orbitals with
the lowest eigenvalues e (we identify the Fermi energy
of the system with the largest e of the occupied orbitals),
and iterating. This scheme works well in practice for
systems which are noninteracting v representable [15,16],
i.e., systems for which the true electron density can be
represented by a single Slater determinant of single-
particle wave functions. However, when the KS orbitals
are degenerate at the Fermi. energy there is an ambiguity
in how to occupy these degenerate orbitals. This is the
case for the FQHE, as we now demonstrate. Consider
a FQHE system in the x-y plane with the magnetic field
along the z axis. A circularly symmetric external po-
tential V,„,(r) = V„,(r) (due, e.g. , to a uniform positive
background charge density) confines the systems such that
the density is fixed with a local filling of v = 1/3 up to
an edge at ro (ro )& Ztt), where the density falls to zero
within a distance of order 4z. That such systems exist is
well demonstrated by the excellent agreement between the
Laughlin wave function and experiments, and by many
numerical calculations [18,23]. Because of the circular
symmetry, we can label single-particle orbitals by angular
momentum I and by a "band" or Landau level index
n ~ 0. The orbitals P „(r) are centered on circles of
radii r =

Q2m hatt with Gaussian falloffs for r (( r
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and r » r . The single-particle orbitals with n = 0 are
then in the bulk all degenerate, and the degeneracy is not
lifted by electron-electron interactions since the system is
homogeneous in the bulk. In order to obtain a constant
density at v = 1/3, even at the center of the system, all
single-particle orbitals in the bulk with n = 0 must have
occupancies 1/3. If the Fermi energy lies above the ener-
gies of the bulk orbitals, they would all be filled, and one
would have v = 1. Therefore, to get occupancies 1/3,
the Fermi energy must lie at the degenerate energy e o of
these orbitals. Thus in applying DFT to the FQHE, we
can expect a huge degeneracy of KS orbitals at the Fermi
energy. Consequently, the particle density cannot be
expressed in terms of a single Slater determinant. Instead,
the density has to be constructed from an ensemble of
Slater determinants; i.e., the orbitals at the Fermi energy
are assigned fractional occupation numbers, just as the
Laughlin wave function is not a single Slater determinant,
but a highly correlated state with average occupancies of
1/3 of single-particle states. This is generally known as
ensemble density functional theory [15,16].

Although ensemble DFT has been developed formally,
there are in practice few examples of applications and
calculations using ensemble DFT for ground state cal-
culations. A significant aspect of our work is that we
have developed an ensemble scheme which is practi-
cal and useful for the study of the FQHE. In ensem-
ble DFT, any physical density n(r) can be represented
by n(r) = g„,„ f~„~P~,(r)~, where f „are occupation
numbers satisfying 0 ~ f „~ 1, and the orbitals P „
satisfy the equation

1
p + —A(r) +V„,(r) + VH(r) + V„(r,8) ~

2m* c

x P( „)(r) = e „P „(r), (1)
where V X A(r) = B(r). In Eq. (1), VH(r) is the
Hartree interaction of the 2D electrons, and V„,(r, B)
is the exchange-correlation potential, defined as a func-
tional derivative of the exchange-correlation energy
E„[n(r), B] of the system with respect to density:
V„(r,B) = BE„[n(r), 8]/Bn(r)~ii. We will hereafter
not explicitly indicate the parametric dependence of V„
and E„on B. The question is then how to determine
these orbitals and their occupancies in the presence of
degeneracies. Here we have devised a scheme to obtain
a set of occupancies which (a) converges to physical den-
sities (to the best of our knowledge) for FQHE systems,
and (b) reproduces finite temperature DFT as well as the
standard KS scheme for noninteracting v-representable
systems. This scheme may be of much more general ap-
plicability to general systems which are not noninteracting
v representable other than the FQHE. In our scheme, we
start with input occupancies and single-particle orbitals,
and iterate the system %« times using the KS scheme.
The number N, q is chosen large enough (about 20—30

in practical calculations) that the density is close to
the final density after N, q iterations. Were the system
noninteracting v representable, we would now essentially
be done. However, in this system there are now, in
general, many degenerate or near-degenerate orbitals at
the Fermi energy, and small fluctuations in the density
between iterations cause the KS scheme to occupy a
different subset of these orbitals at each iteration. This
corresponds to constructing different Slater determinants
at each iteration. While the occupation numbers f „of
these orbitals are zero or unity more or less at random at
each iteration, the average occupancies, i.e., the occupan-
cies averaged over many iterations, become well defined
and approach the value, say, 1/3 for orbitals localized in
a region where the local filling factor is close to v = 1/3.
We use this to construct an ensemble by accumulating
running average occupancies f „after the initial N, q

iterations and use these to calculate densities. Thus our
algorithm essentially picks a different (near-) degenerate
Slater determinant after each iteration, and these determi-
nants are all weighted equally in the ensemble. It is clear
that this scheme reproduces the results of the KS scheme
for noninteracting v-representable systems (for which the
KS scheme picks only the one Slater determinant which
gives the ground state density) for N, q large enough.
We have numerically verified that a finite-temperature
version of our scheme converges to a thermal ensemble
at finite temperatures down to temperatures of the order
of 10 R~, /kii. We have also performed preliminary
Monte Carlo simulations about the ensemble obtained
by our scheme. The results are that to within numerical
accuracy our scheme gives the lowest energy.

In the LDA, the exchange-correlation energy
is assumed to be a local function of density,
E„,/N = f dr@„,(v)n(r), where e„,(v) is the exchange-
correlation energy per particle in a homogeneous system
of constant density n = v/2mlii and filling factor v.
Experience has shown that the LDA often works sur-

prisingly well, even for systems in which the electron
density is strongly inhomogeneous [14]. In the FQHE,
the length scale of exchange-correlation interactions and
density fiuctuations is given by the magnetic length Eii
due to the Gaussian falloff of any single-particle basis
in which the interacting Hamiltonian is expanded. The
densities are relatively smooth on this length scale,
which gives us additional hope that the LDA will work
well for the FQHE also. For the exchange-correlation
energy per particle of a uniform electron gas in a
constant magnetic field, we use the Pade approximant
[24] ie, (v) = e„,(v) + p e„, [n(v)])/I + v where
e~+ is the zero-magnetic-field result [25]. The term

e„,(v) consists of two terms. The first one is a smooth
interpolation formula [26] e„, (v) between ground
state energies at some rational fillings. The second one,
e~, (v), is all important for the study of the FQHE. This
term contains the cusps in the ground state energy which
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cause the FQHE. Here we have used a simple model
which captures the essential physics. We model ec, (v)
by constructing it to be zero at values of v = p/q which
display the FQHE. Near v = p/q, ec, (v) is linear and
has at v = p/q a discontinuity in the slope related to
the chemical potential gap b.p, = q(~A„~ + (Ah (). Here

A„h are the quasiparticle (hole) creation energies which
can be obtained from the literature [27,28] at fractions
v = p/q. Farther away from v = p/q, ec, (v) decays
to zero. Finally, in the LDA, V„(r) is obtained from
e„(v) as V„,(r) = d[ve„(v)]/Bv~, ,(„1=at constant B.
In our calculations, we restrict ourselves to include only
the cusps at v = 1/3, 2/5, 3/5 and v = 2/3, which are
the strongest fractions.

A technical difficulty arises in the LDA: The discon-
tinuities in V„(r) in the LDA give rise to a numerical
instability. The reason is that an arbitrarily small Auctua-
tion in charge density close to a FQHE fraction gives rise
to a finite change in energy. To overcome this problem,
we made the compressibility of the system finite, but very
small, corresponding to a finite, but very large, curvature
instead of a pointlike cusp in e„, at the FQHE fractions.
What we found that worked very well in practice was to
have the discontinuity in chemical potential occur over an
interval of filling factor of magnitude 10 3. This corre-
sponds to a sound velocity of about 10" m/s in the elec-
tron gas, which is three orders of magnitude larger than
the Fermi velocity of a 2D electron gas at densities typical
for the FQHE. Figure 1 depicts V„, used in our calcula-
tions as a function of filling factor.

We have self-consistently solved the KS equation
[Eq. (1)] for a spin-polarized quantum dot in a parabolic
external potential, V, ,(r) = 2m" I), r by expanding
the KS orbitals P „(r) = e' ~p,„„(r) in the eigenstates
of Hp = (1/2m"') [p —(e/c)A(r)] in the cylindrical

]
gauge, A(r) = 2Br@, including the four lowest Landau

0.0

1.5
B=2.5 T
B=31 T
B=4.3 T

1.0

levels (n = 0, . . . , 3). We chose Ep = 13.6, appro-
priate for GaAs, and a confining potential of strength
[2] RA = 1.6 meV. In particular, we have used our
DFT-LDA scheme to study the edge reconstruction of the
quantum dot as a function of magnetic field strength. As
is known from Hartree-Fock and exact diagonalizations
[5—8, 18], for strong confinement the quantum dot forms a
maximum density droplet in which the density is uniform
at v = 1 in the interior, and falls off rapidly to zero
at r = $2N 4ii = rp As t.he magnetic field strength
increases, a "lump" of density breaks off, leaving a "hole"
or deficit at about r = ro. This effect is due to the short-
ranged attractive exchange interaction: It is energetically
favorable to have a lump of density break off so that the
system can take advantage of the exchange energy in the
lump. As B is further increased, the correlations will
cause incompressible strips with densities v = p/q to ap-
pear [9—11,29] on the edges and incompressible droplets
to form in the bulk at densities v = p/q. Figure 2
depicts various stages of edge reconstruction obtained by
us as the magnetic field strength is increased. The value
of II for which the exchange lump appears compares
very well with the value found by De Chamon and Wen
[6] in Hartree-Fock and numerical diagonalizations. At
higher fields still, the incompressible strips appear at the
edges, and incompressible droplets are formed in the
bulk. We would like to point out that the total potential
V„+ V~ + V, „ is constant on an incompressible strip,
due to the correlations included in V„. Consequently, the
KS eigenvalues of states localized at an incompressible
strip are degenerate. We emphasize that incompressible
regions that appear in our calculations are not due to the
presence of a uniform positive background density, which
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FIG. 1. Exchange-correlation potential V„as a function of
filling factor in units of e2/eof'z for 0 ~ v ~ 1. The increase
in V„, at a FQHE filling occurs over a range of a filling factor
of 0.004.

FIG. 2. Edge reconstruction of a quantum dot as the magnetic
field strength is increased. Plotted here is the local filling
factor v(r) for a parabolic quantum dot with hA = 1.6 meV
and 40 electrons. For magnetic field strengths B ~ 2.5 T, the
dot forms a maximum density droplet, and for B = 3.0 T,
an exchange hole is formed. For stronger magnetic fields,
incompressible regions form, separated by compressible strips.
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FIG. 3. Occupancies f o vs orbital centers r for a composite
edge of a system of 45 electrons (diamonds). Here 8 = 5.0 T.
Near the edge, the occupancies rise to unity. The full line
shows the corresponding local filling factor.

tends to fix the bulk density at the value of the background
density.

There is also another edge effect caused by correlations.
For particular, stiff confining potentials, so-called com-
posite edges [18,30] can appear. These can be thought
of as particle-hole conjugates of uniform incompressible
droplets. Consider a droplet with a bulk density corre-
sponding to v = 1/3, falling off to zero at the edge. An
incompressible droplet with a bulk density of v = 2/3 is
obtained by particle-hole conjugation. However, at the
edge, the density will first rise to v = 1 (since the density
of the v = 1/3 droplet drops to zero) and then eventu-
ally drop to zero. Note that this argument is based on
particle-hole conjugation, which is an exact symmetry of
the lowest Landau level [31],and it is unclear if compos-
ite edges exist in real systems which do not strictly obey
particle-hole symmetry.

Figure 3 depicts the occupations of the Kohn-Sham
orbitals and the particle density (inset) for a system where
the confining potential is supplied by a uniform positive
background charge density n+ = 2/67rZ~ for r ( ro,
where ro is fixed by charge neutrality. From this figure,
we see that for this choice of potential the system forms
a composite edge, even though our system does not obey
particle-hole symmetry. We therefore conclude that such
edges can exist in real systems. We have also verified
the stability of all our incompressible regions by adding
or subtracting a particle from the system.
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