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Renormalized Proton-Neutron Quasiparticle Random-Phase Approximation and Its
Application to Double Beta Decay
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A self-consistent method of treating excitations of the proton-neutron quasiparticle random-phase
approximation is presented. The non-self-consistent methods violate the Pauli exclusion principle and
lead to an eventual collapse of the ground state. This behavior renders a reliable calculation of the
nuclear matrix elements, relevant for the prediction of double-beta-decay half-lives, difficult. The
present formalism promotes the Pauli exclusion principle and avoids the collapse of the double-beta-
decay matrix elements. We have applied this formalism to the double beta decay of ' Mo.

PACS numbers: 21.60.Jz, 23.40.Hc, 27.60.+j

At the moment, the neutrinoless double beta decay
(0v P P) is the best probe for physics beyond the standard
model of electroweak interactions. Its existence connects
with many fundamental aspects of neutrino physics [1].
To date, only lower limits on half-lives of different
nuclei have been obtained experimentally. These limits
are used to deduce upper limits on the Majorana-neutrino
mass, the right-handed-current admixture parameters, the
Majoron —Majorana-neutrino coupling constant, etc. One
particular source of uncertainty in the above analyses is
the evaluation of the nuclear matrix elements involved.
For the decay to the ground state of the daughter nucleus,
the mass mechanism is the dominant one [1], leading
to the need of evaluating the associated double Gamow-
Teller matrix element (DGT) as reliably as possible.

It is important to note that in connection with the 0vP P
decay, the detection of double beta decay with the emission
of two neutrinos (2vPP), which is an allowed process of
second order in the standard model, enables experimental
determination of the magnitude of the DGT. This is be-
cause both modes of double beta decay require the same
basic many-body nuclear-structure wave functions leading
to the need of developing theoretical schemes of calcu-
lation in connection with both the 2vPP decays and the

OvPP decays. The improved theoretical methods yield
better predictions for double-beta half-lives and stimulate
new and better-focused double-beta experiments.

After its successful application to 2vPP decay [2], the
proton-neutron quasiparticle random-phase approximation
(pnQRPA) has been the most powerful tool in studies of
double beta decay of medium-heavy and heavy open-shell
nuclei. In these studies both schematic [2] and realistic [3]
two-body matrix elements have been used. A shortcoming
of these calculations is that they violate the Pauli exclusion
principle and lead to an eventual collapse of the pnQRPA
ground state. This collapse is caused by generation of too
many ground-state correlations with increasing strength
of the proton-neutron interaction. This means that in
the region of realistic pn-interaction strengths, i.e., near

g~~ = 1.0, where g~~ is the strength parameter of the

particle-particle part of the pn interaction [2], the DGT
may be very unstable, changing its magnitude very fast
as a function of g~~. Therefore, a reliable calculation of
the nuclear matrix elements, relevant for the prediction
of double-beta-decay half-lives, becomes difficult. In
particular, this instability has been speculated [4,5] to
hinder a reliable calculation of the DGT in connection with
the 2 v P P transition ' Mo(g. s.) ~ ' Ru(g. s.).

Several attempts [4,6—8] have been made to shift
the collapse of the pnQRPA ground state to higher
values of g~~, possibly beyond the physically acceptable
region. In Refs. [4,7] the method of particle-number-
projected pnQRPA equations was used and in Ref. [6]
the BCS self-energy corrections were included in the
calculations. The authors of Ref. [8] tried to achieve
a consistent determination of gzz by invoking partial
restoration of isospin and Wigner SU(4) symmetries. All
these methods, however, disregard the main source of
ground-state instability, namely, the increasing violation
of the Pauli principle with building up of an excessive
amount of ground-state correlations.

In this Letter we present an easy-to-apply method with
which one can avoid the instability of the DGT and pro-
duce more reliable predictions for the double-beta half-
lives. This method we call the renormalized pnQRPA,
RQRPA for short. It is not restricted to any particular
choice of the single-particle basis or form of the two-
body interaction. To our knowledge, the RQRPA is the
first attempt to retain the Pauli exclusion principle in
the correlated ground state of the pnQRPA with increas-
ing strength of the proton-neutron interaction. Below we
summarize its basic ingredients and demonstrate its ap-
plication by comparing its results with the results of the
ordinary pnQRPA in the case of the previously mentioned

Mo decay. On one hand, this comparison is stimulated
by the suggested [4,5] instability of the DGT, and on the
other hand, by the present experimental efforts [9] being
invested in the study of the ' Mo double beta decay.

The first step in the RQRPA calculation, as in the or-
dinary pnQRPA, is the BCS calculation of the even-even

410 0031-9007/95/75(3)/410(4)$06. 00 1995 The American Physical Society



VOLUME 75, NUMBER 3 PHYSICAL REVIEW LETTERS 17 JUr v 1995

ground state leading to the quasiparticle representation of
the nuclear Hamiltonian. After that, one can derive the
RQRPA equations in a straightforward way by using the
equations-of-motion (EOM) method [10]. In the EOM
one starts from the creation and annihilation operators of
excited states, which, in the case of odd-odd nuclei, con-
sist of proton-neutron two-quasiparticle components

Qt(m; JM) = + [X„„At(pn;JM) —Y„„A(pn;JM)],

(1)

where the notation is from [11]. Using the machinery of
the EOM theory [10],one arrives at the matrix equation

ym
= ~~m 0 U ym

where the matrices A and B are defined as

A( pnp'n'J) = (RPAI [A(pn; JM), H, At(p'n', JM)]
x IRPA), (3a)

8(pnp'n'J) = (RPAI [A( pn; JM), H, A( p'n', JM)]
x IRPA), (3b)

Here the double commutators are defined as [A, B, C] =
2 [A, [8,C]] + z [[A,B],C]. The matrices A and 8
in (2) carry contributions from one-body and two-body
ground-state densities [10]. These contributions go be-
yond the ordinary pnQRPA level and take into account
the Pauli exclusion principle [10]. They are nonzero be-
cause in the EOM one takes the intrinsic fermion structure
of the pair operators A(pn; JM) and At(pn; JM) fully
into account when deriving Eq. (2.)

Keeping only the diagonal parts of the one-body
densities, the overlap matrix U on the right-hand side of
(2) becomes

U( pnp'n') = (RPAI [A(pn; JM), At(p'n', JM)] IRPA) = Appian„„I(1
—j„(RPAI [atap]oolRPA)

—j„(RPAI [a t a„]ooI RPA)) = 6p p~ B„„Dp„, (4)

where j = $2j + 1. This form of overlap matrix is exact if the single-particle valence space contains at most two
major oscillator shells (which is the case in the present calculation). This approximation leads to a diagonal overlap
matrix U, and Eq. (2) can be transformed to standard RPA form [1]. After this transformation, and omitting the two-
body densities (supposed to act incoherently with random phases, see Ref. [10]),one obtains the RQRPA equations with
new matrices A and B

where now the matrices A and B read

—m = AGOm —m

A(pnp'n'J) = (Ep + E„)6pp~6„„—D'~ [2G(pnp'n'J) (upu„uptu„+ vpv„vp v„)
+ 2F(pnp n J) (upv„up v„+ vpu„vp u„)]Dp „,

B(pnp'n'J) = D ~ [2G(pnp'n'J) (upu„vpiv, + vpv„upiu„i)
—2F(pnp n J)(upv„vpiu„~ + vpu„up v„i)]D„„.

Dp„= 1 —j Dp„~ J Y,i

—J. 'QDp „I g J'IY-', ,„I'
p' (Jm

(7)

The above equation cannot be converted into an ordinary
matrix-inversion problem and must therefore be solved by

—m 1/2 —m &/2
The amplitudes X = Dpn X „and I' „=Dqn I' „

fulfill the usual RPA orthogonality relations, as one can
easily check using Eqs. (1) and (4).

So far nothing has been said about the calculation of
the overlap matrix elements D~„. We adopt the method
of Ref. [12] where the one-body densities are expressed in
terms of fermion-pair creation and annihilation operators
A~ and A. One can expand the product of the fermion-pair
operators [12] by using completeness of the intermediate
states and then apply Eq. (4) to yield

iteration. Equations (5) and (7) together form a doubly
iterative problem. When the coefficients D~, on the right-
hand side of Eq. (7) are put equal to unity, we obtain the
usual pnQRPA expression of ground-state correlations,
which is valid as long as ground-state correlations are
small. In this case no double iteration is needed. To
access the difference between these two approximations
of D~„we have used them both in our calculations.

To be able to calculate beta-decay and double-
beta-decay transition amplitudes, one has to know the
renormalized charge-changing transition densities of the
RQRPA, namely,

(RPAII [cptc.]LIIJ ) = L~I.J[vpu &p.

(RPAII [c„cp]I.IIJm) = 1-&ig[upv, xp„
+ v p u„Y„,]D„'„gJ„„, (8b)
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FIG. 1. Energies of the three lowest 1+ states of ' Tc cal-
culated using the pnQRPA and four different approximations
of the RQRPA as a function of the particle-particle interaction
strength g„„. Short-dashed line: single-iterative (SI) with inter-
mediate 1+ states only. Dot-dashed line: double-iterative (DI)
with intermediate 1+ states only. Long-dashed line: SI using
intermediate 1+, 2, 3+, and 4 states. Solid line: DI using
intermediate 1+, 2, 3+, and 4 states.
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FIG. 2. P transition amplitudes M(GT) for the decay of
Mo(g. s.) to the three lowest 1+ states of ' Tc as functions of

the particle-particle interaction strength g». Highest group of
lines: M(GT) for the state I& . Middle group of lines: M(GT)
for the state 12. Lowest group of lines: M(GT) for the state
13 . For the meaning of the various line types, see the caption
of Fig. 1.

where i7J = (—1)~~+1"+J+'. These transition matrix
elements can be inserted into the standard expressions of
the Gamow-Teller beta-decay [11]and double-beta-decay
[1—3] amplitudes.

We demonstrate the use of the RQRPA by calculating
the 2vpp transition amplitude ' Mo(g. s.) ~'oo Ru(g. s.).
Both the pnQRPA and RQRPA calculations follow the
scheme of Ref. [5]. Our single-particle valence space
consists of major shells 3Fico, 4hcu, and the Oh~~y2 in-
truder orbital from the 56~ major shell. The adopted
single-particle energies and the two-body G-matrix inter-
action are the ones of Ref. [5].

Our results are summarized in Figs. 1 —3. Figures 1

and 2 show the three lowest energies of the intermediate
1+ states and the P transition amplitudes to these
states from ' Mo(g. s.) as functions of the proton-neutron
interaction strength g p p, Corresponding results for ' Ru
are qualitatively similar. Finally, in Fig. 3 we summarize
the calculated results for the 2vPP decay ' Mo(g. s.)

Ru(g. s.) as a function of g„„.
In all figures we call those results where Eq. (7) is sim-

plified noniterative as "SI"and those results where we take
Eq. (7) fully iterative as "DI'*. The full RQRPA calcula-
tion needs fairly big computational effort because in each
step of the singly or doubly iterative procedure of solving
Eqs. (5) and (7), for a given g„„,we must, in principle,
find eigenstates for all intermediate multipolarities J . To
study the effects of different numbers of intermediate mul-
tipolarities, we have performed the calculations using two
sets of I:either only 1+ states (denoted [ I+ ] in the fig-
ures) or states 1+, 2, 3+, and 4 (]I+,2,3,4 ] in the

1 i I I I i I ~ I i I i I

0.4—
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g in " Mo and "' Ru

PP

FIG. 3. The 2 v P P transition amplitude ' Mo(g. s.)
Ru(g. s.) as a function of the particle-particle inter-

action strength g„„. For the meaning of the various line types,
see the caption of Fig. 1.

figures) which, in this case, are the only important multi-
poles affecting the solution of Eq. (7).

As can be seen from the figures, for part of the physically
acceptable values of particle-particle interaction strength,
e.g. , 0.8 ~ gpp ~ 1.0, the results of different approxima-
tion schemes differ only little from each other. For larger
values of gpp the lowest 1+ state vector, which in ordi-
nary pnQRPA collapses at some critical particle-particle
interaction strength, in this case at gpp

= 1.03, behaves
smoothly in the RQRPA. Thus the pnQRPA collapses
in the physically acceptable region of gpp and may lead
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to ambiguous determination of the beta-decay and double-
beta-decay Gamow- Teller matrix elements. This is further
demonstrated in Fig. 2 where one observes that near g„~ =
1.0 the decay amplitude to the lowest intermediate 1+ state
becomes unphysically large for the pnQRPA, whereas in
the RQRPA the corresponding amplitude remains stable.
Figure 3, in turn, indicates that the 2vPP amplitude re-
mains rather stable at g„„=1.0 for the pnQRPA and does
not differ drastically from the result of the RQRPA, es-
tablishing the validity of the results of Ref. [5]. In some
other cases [3], especially for some double P+ and elec-
tron capture decays, the situation may not be that fortunate
and severe difficulties can arise in the pnQRPA.

For higher 1+ states both energies and beta-decay am-
plitudes are well described by the pnQRPA, even beyond
the physical region of gpp As a general observation, the
RQRPA amplitudes calculated with Eq. (7) tend to dimin-
ish faster than the corresponding amplitudes calculated
using the noniterative approximation of D„„. This is in
keeping with the observations of Ref. [12]. However, for
all shown values of g~„ the different RQRPA approaches
yield amplitudes of the same order of magnitude.

In conclusion, we have developed a straightforward
method, the renormalized proton-neutron QRPA, for a re-
liable calculation of beta and double-beta transition ma-
trix elements in a region of two-body interactions where
the ordinary pnQRPA becomes unstable. This method is
not restricted to any particular choice of the single-particle
basis or form of the two-body interaction. It simply pro-
motes the Pauli exclusion principle violated by the ex-
cessive ground-state correlations of the pnQRPA in the
physically interesting region of the proton-neutron inter-
action. This aspect has been neglected in all previous at-
tempts to overcome the eventual collapse of the pnQRPA
We demonstrate the RQRPA method by comparing its re-
sults with the pnQRPA results in the case of the 2vPP
transition ' Mo(g. s.) ~ ' Ru(g. s.).
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