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Hall Resistance in the Hopping Regime: A "Hall Insulator"'?
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The Hall conductivity and resistivity of strongly localized electrons at low temperatures and small
magnetic fields are obtained. The results depend on whether one uses the conductivity or resistivity
tensor to obtain the macroscopic Hall resistivity. In the second case the Hall resistivity always diverges
exponentially as T ~ 0. However, when the Hall resistivity is derived from the conductivity, the
resulting temperature dependence is sensitive to the disorder configuration, and the Hall resistivity may
approach a constant value as T ~ 0. This is the Hall insulating behavior. It is argued that for strictly
dc conditions the transport quantity that should be averaged is the resistivity, and this shows no Hall
insulating behavior.

PACS numbers: 72.20.My, 71.50.+t

Recently it has been stated [1—3] that the zero-
temperature Hall resistivity p,Y(co) of noninteracting
electrons in the insulating regime remains finite as the fre-
quency ~ ~ 0. This puzzling result was derived from the
Kubo formula for the frequency-dependent conductivity.
It was found that at zero temperature the disorder-averaged
tT Y(to) of the Anderson insulator vanishes at low fre-
quencies proportionally to cu . Since to leading order in
cu the longitudinal conductivity cr —i,~so, where ~0 is
the dielectric constant, this yielded that the Hall resistivity

p Y
—o. ~/(o. + o. ) approaches a constant in the

small-frequency, zero-temperature limit.
In the present Letter we show that the above prediction

of a "Hall insulator" came about because of an averaging
procedure inappropriate for dc conditions. We examine
the Hail resistance of strongly localized electrons at
finite temperatures, and find that the correct dc result
diverges. As in Ref. [3], we consider the problem using
the Holstein model [4] for the Hall effect in a system
with localized states. The smallest cluster that yields a
Hall resistivity contains a triangle of three sites. The
correct way to obtain the macroscopic Hall resistivity
from the single-triangle conductivity tensor is different
for ac or dc measurements. Under ac conditions, one has
to average the conductivity tensor, and a Hall insulator
behavior is possible. This procedure, at zero temperature,
has been followed in Refs. [1—3]. On the other hand,
as discussed below, under dc conditions one has to first
invert the conductivity tensor and then to average over
different orientations of the triangle. In this case the
macroscopic Hall resistivity diverges as the temperature
tends to zero, similar to the findings of Friedman and
Pollak [5]. Thus our Letter presents a simple explanation
for the nonexistence of the dc Hall insulator.

The previous [1—3] discussions of the zero-temperature
Hall resistivity were all based on the ensemble averaged

Kubo formula, which yields that 6 z&
= 0 yy and that o zy

vanishes proportionally to the magnetic field (the overbar
above the quantity indicates ensemble averaging). How-
ever, before averaging, o,~ includes a field-independent
term. We show that in the strongly localized regime this
term is comparable in magnitude to ozz and oyy This
leads to delicate cancellations when the local (unaver-
aged) conductivity tensor is inverted to obtain the resis-
tivity, and consequently to the very different temperature
dependences described above.

It is convenient to investigate the transport properties
of electrons in the hopping regime by constructing the
rate equations for the electron distributions, utilizing the
electronic transition probabilities between localized states.
One has

in which n, is the electronic population of site i (the term
"site" is used for a localized state) and P;j is the rate of
the population decay by phonon-assisted hopping into site
j. A delicate point is the dependence of the rate on the
magnetic field, H. As was shown by Holstein [4], this
is due to interference of the "direct" amplitude to hop
from i to j, with the indirect amplitude via a third site 8,
i ~ 4 ~ j. The magnetic field dependence of P;, then
necessitates the consideration of at least three sites. To
write this rate explicitly, we employ the Holstein model
[6] for the electron-phonon interaction, in which the ion
displacements are coupled to the local (site) density of the
electrons, and denote by e; the single-particle energies of
the localized states, which are assumed to be randomly
distributed, and by J;J the overlap of two wave functions
localized at sites i and j. The strong localization regime
is characterized by [4,7] (J;~~ && ie;, ), e;, = e; —e, .
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One finds

p pdir + pindir (2)

Here p12' arises from the direct amplitude alone and is
independent of the magnetic field,

tions determine the electrochemical potential differences,
However, in practice one does not have to solve for

the g~s since Eq. (8) gives the current [7] [see Eq. (13)be-
low]. In (8), G;j is the conductance of the bond ij, arising
from the direct rate,

nl (1 n2) I J121' dt '~"' tg(') g( )] +1J +Jl

dt2 eg(tl )+g(~2) +g(~1 + t2) 3g(O)t1 e

[(1 )
1 e12tl +l E'l3 t2 1 e12EE+l e32t2] (4)

g(t) = g 2 [(1 + Nq)e ' " + Nqe™'], (3)

where cuq is the phonon frequency, vq is the interaction
matrix element, and N~ = I/(ej ~ —1) (R = 1). P12

'"

comes from the interference between the direct (1 ~ 2)
and the indirect (1 ~ 3 ~ 2) amplitudes

P12" = ni(1 —n2) IJ 1J22J33 I)23e'~'"

2p 0(1 0) IJ I2 d& et e,, te2'(g(t) gIo)j— (9)

At low temperatures [7] and for weak electron-phonon
coupling, the bond conductance becomes

G, — 2 p I J I2
" 'j —P(le, I+ le, I+le, —etl)/2v 23K(i e

Ej Ej

(10)
where 3V is the phonon density of states. (Energies are
measured from the Fermi energy. ) The interference pro-
cess leads to the phase-dependent term, with

I' = e'pni(1 —n2) IJ12J23J311
and contains the occupation of site 3, n,3, and the magnetic
phase, @132, dtl eg(ti)+g(t2)+g(t +t2) —3g(0)

6P, ; —6P,J
I,J

—E Rj, Rj = R; —Rj. (7)

Explicit calculations of Eqs. (3) and (4) yield

dn, 1

dt
e(P21 P12 + P31 P13)

G123212 + G31EE13 + sinEIt I f23 (8)
with analogous expressions for the other two sites, where @
is the magnetic flux enclosed in the triangle. These equa-

@132 = —H S,
C

5 = (Ri && R3 + R3 & R2 + R2 && Ri)/2. (5)
Here R; is the radius vector of site i, , and S is the vectorial
area of the triangle. The field-dependent part of P12
includes a term even in the field (proportional to cos@132)
and a term odd in it (proportional to sin@132). The first
gives a correction to the direct rate and will be discarded
henceforth. Obviously it is the term odd in the field that
is capable of producing the Hall resistance.

We now apply the rate equation (1) to a group of three
sites, 1, 2, and 3, to obtain the current driven by an external
ac electric field F of small frequency cu. In the presence
of an electric field the occupations n; will be modified in
a way that can be expressed by changes 6p, ; in the local
chemical potentials [7]

n; = n,
' —Pn,'(1 —n0)ap, ;, (6)

where n; is the Fermi distribution. Also, the rate P;J that
depends on e; —eJ is changed to depend on e; —eJ +
eE . (R; —Rj). This way one obtains the response of
the system to the local electrochemical potential differ-
ences [7]

l&12tl [(1 03 1&1332 + 0 le32t2 Ift3ge

Expanding this expression for weak electron-phonon in-
teraction and using (10) we find that I can be written in
the form

IJ12J23J31I ( G31G12
4e'p & I J31J121 ni (1 ni)

G23G31+ + 0 0
I J12J23i'n2(1 —n2) IJ23J31 I'n3(1 —n3) j

(12)
This expresses the fact that the indirect rate involves two
scattering events by the phonons [4,8]. The temperature
dependence of I, at low temperatures, can be obtained
from (10), using n, (1 —n, ) —exp[ —P I e; I].

The current density is given by

(13)

If one now introduces the effective field E,qq, which
produces the electrochemical potential,

13ij Eeff ' Rij

1
E,ff = [$23RI + $3)R2 + g)2R3] & Z, (14)

2S,
the current density becomes

j = o+eff~

R12R12+12 + R23R23t-J23 + R31R31G31

+ I sin@(R23RI + R31R2 + R12R3). (15)

A remarkable observation is that the part of j that is
proportional to the magnetic field is perpendicular to the
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effective electric field. In deriving the expression for o.
it was assumed that the triangle lies in the x-y plane,
perpendicular to z. Note that F.,tr, Eq. (14), is invariant
to the choice of the coordinate origin.

The current response to the electrochemical potential
difference is our central result. From (15) one finds for
the conductivity tensor

oxx = (Ri2) Gi2 + (R23) G23 + (R3i) G3i (16)
(o.~~ is given upon replacing R';~ by R;~), and

x
cr;,y = R12R12G12 + R23R23G23

+ R3, R3)G3i + 2S, I'sing. (17)
It is straightforward to check that these results follow

very simply also from the Kubo formulation, with the
understanding that it yields the response to the effective
field F.,tt.

m x; n n xj m
o.;, (cu) =

Vol „m —e„+ ig
mxjn nx;m (f —f.), (1g)

where rt is a positive infinitesimal, lm) and ln) are eigen-
states, and f„, f their populations. We generalize the
derivation of [3] to include electron-phonon coupling and
consider the ~ ~ 0, co ~ 0 limit. For example, to get
the leading, (1,2)-type terms, in (16) and in the first line
of (17), the two relevant states are ll): electron in site 1

with a phonon bath in equilibrium and I2, q): electron in
site 2, with the same minus one phonon in state q, where
coq = e21. Thus, the approximate eigenstates are

lm) = ll) + P 12, q), (19)
E12 + Cc)q

J21 Vq
In) = I2, q) + Il),

COq
(2o)

where vq = vqQNq/cuq, and

Jizlvql'R)2
(nlxlm) —= (21)

Using Eq. (18), this produces the first term in (16),
1 x & 2 2 Ivql

(Ri2) e PJ)2 2 Nqqr6(o) —e2i —coq)
Vol CU

= ~pe J„(R„),N, PV(e„)l. =„, .
CcP

(22)
Using the expression similar to (20) for the matrix
elements of y yields the first term in (17). The (2,3) and
(1,3) terms in Eqs. (16) and (17) are similarly obtained.
To get the I term in (17), one has to mix in Eq. (19) also
the state I3, q, q') (i.e., I3) minus the phonons q and q') in
two ways.

(a) A straightforward correction g~ [Ji3vqvq /(ei3 +
coq + ~q~)] I3, q, q'), which is first order in J but second

order in the electron-phonon interaction. It will be domi-
nated by the "resonant" contribution (q' such that cuq +
cuq =

equi) and by the nonresonant contribution given by
q' = q" such that Mq« = 63/.

(b) The Holstein contribution, the mixing of I2, q) via
the intermediate state I» q q'): Zq I J)3J32vql vq'I /(&i3 +
coq + coq) (eiz + cuq)] I2, q). Here, asfoundby Holstein,
the resonant contribution with e31 = cuq + coq will
yield the needed phase to have a term odd in the magnetic
field (the I term) in (17). Putting all the above together
we find within the required accuracy

J12 &q
(nlxlm) = R„—2i~a(e3i —~, —~, )

X Ji3J32 vq I vq' I R3
R1 + R2

(23)
2

(i) 25 I sing

(R„) G' ' (24)

where we have assumed for simplicity that G12 is the
largest conductance. To obtain the temperature depen-
dence we consider the situation in which the magnetic
field-free hopping conduction takes place along the bond
12 and site 3 supplies the interference path. Thus we
imagine e1 and e2 to be below and above the Fermi level,
but close to it, while e3 is away from the Fermi energy.
Then [cf. Eqs. (10) and (12)]

p y 2 expl p(e3 2e2 + ei)l
12

Using this in Eq. (18) produces the additional I term in
Eq. (17).

The result of the above calculations is the conductivity
tensor o. of a single triangle. From that, one would like to
obtain macroscopic quantities, such as the Hall resistivity
p,~. This is quite difficult. One often tries to do that by
some averaging. Two different properties to be averaged
over are the orientations and sizes of the triangles and
then the (widely distributed) on-site energies. A priori at
least two averaging procedures exist. One can average o.,
resulting in D., and then calculate p ~

= (o. ) ~. One
can also average the resistivity tensor of a triangle o.
to obtain p ~

—= (o. '),~. As we will see, these two
procedures lead to qualitatively different results. This
fact, which has not been noticed before, demonstrates the
trickiness of the averaging procedure.

We note that o.,~ includes a term independent of the
magnetic field, which is of the same order of magnitude
as o;, . Were we to average cr over directions before
inverting it, then this term would have disappeared.
However, if p is to be averaged, then this term remains,
and leads to delicate cancellations in the denominator
of p. This, in turn, is the cause of the two different
temperature dependences of the Hall resistivity.

We first average the conductivity tensor over directions
and then invert it. In that case,
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and is sensitive to the averaging procedure over the on-
site energy distribution. One may imagine that the energy
e2 is mostly in between the energies e~ and e3, in which
case the log average of p Y will lead to a constant value(i)

for the Hall resistivity at very low temperatures —i.e., a
"Hall-insulating behavior. "

We next consider the transverse resistivity obtained by
inverting the full conductivity tensor and then averaging
over directions to restore rotational invariance. The re-
sult is

(2) I sin@
pxy 2Sz Gi2G23 + G23G3i + G3i G]2

(26)

Because of the cancellations occurring when o of
Eqs. (16) and (17) is inverted, the denominator here
includes G~2G23, etc. , but not the (larger) term G~2, as in

(24). Consequently, p ~ increases exponentially as the
temperature tends to zero, independent of the specific con-
figuration of the single-particle energies. This is because
of the factors n; (1 —n; ) in Eq. (12). Consider, for exam-
ple, the energy configuration specified above. In that case
the leading term in I is of order exp[ —P (e3 —et)] while
G]2G23 (G]2 —exp[ —P(ez —ei)], G23 —exp[ —Pe3])
dominates the denominator in Eq. (26), leading to

p Y exp[Pe2].(2)

Both p~~ and p~~ are independent of the strength of(i) (2)

the coupling to the phonons. This is in analogy with
the "classical" (Boltzmann equation) result for the Hall
coefficient, which does not contain the mean free path.

The physically correct way of averaging may depend on
whether the experiment is a dc one or an ac one. In the
ac case the current contacts are irrelevant, the current is
inside the sample, and the macroscopic current density is
obtained by summing the contributions from all triangles
within a unit volume. This is equivalent to the averaging
of the conductivity tensor of a single triangle.

In the dc case, the current is flowing from one current
contact to the other through a percolation chain of bonds.
Thus, the direction of the current in each bond is defined.
To find the elementary Hall voltage created at this bond
we can use the resistivity tensor of a single triangle. The
total Hall voltage is obtained in this case by summing
over the bonds along the percolation chain. This is
equivalent to the averaging of the resistivity tensor of a
single triangle. Thus, the dc Hall resistivity should be
calculated by averaging over p. This is in accordance
with the discussion given in Ref. [9]. We do not have
a definitive idea as to the crossover frequency between

the ac and dc regimes. One might specu(ate that it is the
inverse of the time it takes the electron to traverse the
sample from one current contact to the other. However, a
different length scale may be involved in this.

To summarize, two independent derivations of cr at
zero frequency but finite temperatures, were given for
the Holstein model. Here the Hall conductivity too has
a finite dc value when real, phonon-mediated, transitions
are allowed. Surprisingly enough, we find that the answer
depends on which transport quantity is averaged over
directions. It was shown that the ensemble averaging
needed to get the macroscopic Hall resistivity is subtle,
and the result depends on whether cr is averaged before or
after having been inverted. The former procedure leads
to a possible "Hall insulating" behavior. The latter leads
to a p z, which grows exponentially when the temperature
is lowered. Using the percolating path picture (see, e.g. ,
Ref. [7]), we argued that the latter is the proper averaging
procedure for the dc limit. Finally, we would like to
remark that we have not specifically considered here the
deep quantum, large field, limit [10], which we hope to
address in future work.
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