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Optical Dispersion by Wannier Excitons
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An analytical expression of the complex dielectric constant of Wannier excitons is obtained, which
includes exactly the contributions of all bound and unbound states. It allows an improved description
of the excitonic inhuence on the optical properties of semiconductors near the band gap, especially with
respect to dispersion effects.

PACS numbers: 71.35.+z, 78.20.—e

The importance of excitonic effects on the optical
properties of semiconductors in the vicinity of the band
edge has been recognized for decades. In his renowned
paper [1], Elliott gave the analytical expression of the
intensity of optical absorption by Wannier excitons, now
reproduced in many textbooks. The excitonic spectrum
is similar to that of the hydrogen atom and consists
of discrete lines and of a continuum [2], the latter
being described by the so-called Sommerfeld or Coulomb
enhancement factor. Elliott's formula has been used
extensively for the determination of the physical con-
stants of semiconductors and has been convoluted with
a Lorentzian to account for the broadening of the energy
levels [3]. However, the real part of the dielectric con-
stant was not calculated in Elliott's paper, and dispersion
effects were not properly taken into account, the refrac-
tive index being considered approximately constant near
the absorption threshold.

Such a crude description of dispersion effects is not
satisfying any more. Spectral hole burning experiments
in semiconductor thin films have demonstrated the impor-
tance of reilectivity measurements [4]. Ever more solid-
state devices are operating close to the band edge, be
it lasers or optical modulators. The field of multilay-
ered structures, such as microcavities, is rapidly growing
[5]. An accurate model of the refractive index of semi-
conductor materials, some of them ternary or quaternary
alloys for which scarce experimental information is avail-

!

able, is obviously needed, in academic and engineering

studies alike [6]. Many optical constants [7], along with
their temperature or pressure dependence, are linked to the
complex dielectric constant and would benefit also from
its better description near the absorption threshold.

In this Letter, we complete Elliott's results by giving
in Eqs. (6), (11), and (12) the complex dielectric con-
stant ~ = eq + ie2 of Wannier excitons, taking all bound
and unbound states exactly into account, while includ-
ing a broadening I' of the energy levels [8—10]. The
contribution of the Coulomb enhancement factor to ~~ is
derived for the first time, and that of all bound states —not
merely the fundamental one —as we11. The final result
for e clearly shows that bound and unbound states are but
the manifestation of a single physical effect, namely, the
Coulomb interaction between electron and hole. There-
fore, they should not be dissociated in the treatment of
excitonic effects. We conclude by giving some directions
in the application of this newly found expression of ~.

The starting point of the calculation is&standard. It
relies on the linear response theory and Fermi's golden
rule for light-matter interaction proportional to p ~ A
[11—12] and assumes that the effective mass approxi-
mation with parabolic bands is va1id. Weakly bound
(Wannier) excitons and a constant dipole matrix element
!e M„(0)! for allowed transitions are considered [11].
With R being the energy of the fundamental bound state
[13],E~ the band gap energy, and p, the reduced mass of
the exciton, a2 reads [3] in SI units

R
~,(E) = g 4~R'~' —a E —E + —+

E2 n3 n'n=l

2~~RO(E —Eg)

1 —exp[ —2' R/(E —Eg)]
forE &0,

h q (2~ /

!e M,.(0)!',
27T8pmp 4 h

(2)

preserving the odd parity of sq with respect to E, imposed
by causality [14]. Using a Lorentzian of width I, we thus

(r)
define ~2 by

where 0 is the Heaviside function. The advantage of
dealing with a2 instead of the absorption is to avoid the
complicated energy dependence of the refractive index.

The next step, which turns out to be crucial, is to
introduce a broadening of the energy levels, while still

(I)
e2 (E) =-

7T ()

dE'a2 (E')
(E —Ei)2 +

dE'~, (E')
(E+ E')2+ I2 (3)
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The second term of the right-hand side of Eq. (3) is
almost always unduly discarded because of its nonreso-
nant character. However, one can check that such a def-
inition, after using the Kramers-Kronig relation, gives the
broadened dielectric constant for interband transitions [9].

For the continuum states, the change of variable u =
2~[R/(E' —Eg)]'~ allows one to rewrite Eq. (3), using
Eq. (1), in the form

+2,unbound(E) du F(u )
o 1 —exp( —u)

6(z) =
Eg —g

g b d(F) = 2A(F) + 2»(4) + I/f

where P(z) = d lnI (z)/dz is the digamma function.
Equation (5) is purposely written in such a form to

make the calculation of e& quite trivial. Indeed e~ and
e~ are linked by a Hilbert transform known as a Kramers-
Kronig relation [14]

—X - (-E)],
1

~, (E) = —P , s2(E')dE'
~f (8)

+ g bo d(6( —E + i~))
l

2gunbound(S (0)) (5)

where F is a rational fraction, and [E ~ (—E)] indicates
that the nonresonant contribution must be subtracted,
as in Eq. (3). A partial fraction decomposition of F,
the identity [I —exp( —u)] ' = 1 + [exp(u) —1] ' and
integral 3.415.1 of Ref. [15] lead to

A~R
+2, bo d(E) Im~

I 2 (g bo d(s (E + i I ))
( E+iI

where the usual +1 term in Eq. (8) has been discarded,
since it can be absorbed in the background dielectric
constant. e& is easily calculated by contour integration
in the complex upper half-plane when a2 (E') exhibits
no singularity for Im(E') ) 0 and conveniently vanishes
for ~E'~ ~ oo, since only the residue at E' = E is then
needed. Consequently, e~(E) verifies an equation very
similar to Eq. (5) with Im( ) merely replaced by Re( ).
This is actually the case for e~ „„b«„d(E). By taking

(r)

the limit I ~ 0 we find the contribution of the unbound
states to e~ for positive energies:

A~R ( Eg
& l,unbound(E ~ ) E'

~ E,' —E'
(—4 + 2 +2 OEg —E«. ) & E. +Ei «. -E)

Eg+El+ 2Rey i e(E —E,) —2 '+ ' O(E, —E)+ ' i, (9)
R R R

the expression given in Ref. [16] being an approximation
of the above equation.

Turning to the contribution of the bound states to e2
(r)

we perform a partial fraction decomposition with respect
to n and use identities 8.365.1 and 8.365.8 of Ref. [15].
We find an expression similar to Eq. (5), with g„„b«„d
now replaced by

gbo d(E) = —2P(I —s) —20(I + F) . (1o)
(r)

Again e& b„„„d is obtained by replacing Im(. .) by Re( .)
in Eq. (5).

Summing the contributions of bound and unbound
states gives finally

.&,h. (b(E + il ))
&r) A~R

E+ iI
+ g.(g( —E —ir))
—2g. (E(0))). (11)

g (s) 21ns 2 cot( $) —2$(s) —I/s . (12)

In the case of forbidden transitions [1,11,12], assuming a
constant matrix element ~e . VI, M„(0)~, the calculation
gives a result similar to Eq. (11), with, of course, a new

constant A' and a function g, replaced by gf .

gf(F(z)) = [z —(E, —R)]g.(6(z)). (»)
It is possible to show that g, (s (z)) is, in fact, proportional
to the resolvent of the Schrodinger equation associated
to the state ~r = 0). Indeed Eq. (12) gives the energies
Eg —R/n and the oscillator strengths ~ 1/n3 of the
bound states because of the poles and the corresponding
residues of rr

cotter

z in the complex plane; Eq. (13)
indicates that forbidden transitions start at the n = 2 level
only [1]. Not unexpectedly, forbidden transitions do not
lead to pronounced features for e~ near Fg. We will thus
limit ourselves to the case of allowed transitions in the
following discussion.

The exact expression of the dielectric constant in

Eq. (11) turns out to be extremely compact, and the
effect of the Coulomb interaction is given by the ratio
R/E~, as expected. The corresponding a~ and eq are
shown in Fig. 1 along with their usual interband val-
ues [9], obtained for vanishing R [we have in that case
g;n«, b»d(s) = —I/g]. We see that dispersion effects are
important close to F~, even for a substantial broadening,
when compared to the interband case. Therefore, the lat-
ter model should not be used to describe excitonic effects
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FIG. l. Real and imaginary parts of the dielectric constant
with excitonic effects (solid line) and without excitonic effects
(dashed line) for E~ = 1.42, R = 0.004, and 1 = 0.006, in

units of A~R.

in the dielectric constant [17]. The logarithmic term in

Eq. (12) accounts for most of the discrepancy between a&

and ~$ jntegbg„d and comes solely from the unbound states.
Such a logarithmic singularity has already been proposed
as the consequence of the steplike behavior of absorp-
tion at Eg [18,19] or been derived from an effective aq

[20,21]. Let us stress, however, that its prefactor corre-
sponds to only half the discontinuity. This comes from
the correct asymptotic expansion of the Sommerfeld en-
hancement factor as given by Dow [22]. Finally, in view
of the exact above result, we note that the shell source
approximation introduced by Stahl and Balslev in their
coherent wave approach is excellent and that e~(E+) re-
mains finite indeed [16].

The new expression Eq. (11) takes the infiuence of ex-
citonic effects on the optical properties of semiconduc-
tors into better account near the band edge and can be
used directly in wavelength modulation spectroscopy or
ellipsometry [9], thereby contributing to a more accurate
determination of optical constants like Fg, R, and oscil-
lator strengths for such materials. The derivatives of e~
and e& with respect to energy have been plotted in Fig. 2,
which shows that the maximum of e~ is reached below
E~ —R, as expected; these quantities may be more inter-
esting because the background dispersion is removed. As
a further consequence, the dependence of optical constants
with temperature or any external perturbation [7,9] can
now be given with greater detail, provided that one keeps
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FIG. 2. Derivatives of e~ and e2 with respect to energy (linear
scale). Same parameters as in Fig. l.

in mind the limitations of the Wannier exciton model
[3,23,24].

The calculation of s for the two-dimensional Coulomb
potential, which can be viewed as the limiting case
for quantum wells and used in the description of M~

edges (saddle-point excitons) [11,12,17,24], has also been
performed and will be published elsewhere [25].

Another application of Eqs. (11) and (12) is the de-
termination of the refractive index n(E) and of n'(E) =
n + E dn/dE [20], of utmost importance in the design
of solid-state lasers, optical modulators, multilayered de-
vices, etc. The particular cases of A1GaAs and InGaAsP
will be addressed in forthcoming papers [25]. Finally, the
method developed in the first part of this Letter should
provide an easy way to calculate expressions similar to
Eq. (1), like those appearing in Raman scattering or those
corresponding to potentials different from the Coulomb
interaction [25].

In conclusion, the expression of the complex dielectric
constant of Wannier excitons has been calculated exactly.
The stage is now set for a better determination of the
optical properties of direct band gap semiconductors near
the absorption threshold, with dispersion effects fully
taken into account.
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Note added. —In a recent work Zimmerman gives an
analytic expression for the continuum contribution to the
complex susceptibility [26] similar to Eq. (7).
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