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Thermal Evolution of Spin-Polarons
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We study the thermodynamics of a single hole in the U = ~ Hubbard model using a Monte Carlo
method which samples graphs that contribute to the partition function; there are no finite-size effects.
The heat capacity and magnetic susceptibility indicate a sharp transition between a high temperature
spin-polaron and a compact ferromagnetic droplet at low temperature. When applied to trapped
vacancies in solid He, this transition would occur near 5 mK.

PACS numbers: 67.80.Gb, 67.80.Jd, 67.80.Mg

A single hole in an otherwise half-filled band with
infinite on-site repulsion (U = ~ Hubbard model) is one
of the simplest models of highly correlated fermions. In
nature, this model is realized by solid He with a trapped
vacancy, provided the temperature is well above the
nuclear-spin ordering temperature TJ. The single energy
in the model is the hopping matrix element t for the hole;
for solid He, t = 50TJ [1]. At temperatures below the
energy scale t, the hole is quantum mechanically delocal-
ized and as a result stirs up the surrounding configuration
of spins. As first noticed by Nagaoka [2] and Thouless
[3), for the case of near-neighbor hopping on a bipartite
structure this situation is not as hopeless (theoretically) as
one might expect. There, the fermionic nature of the spins
plays no role so that all configurations of the surrounding
spins, accessed by the hole traversing a closed path, have
the same sign. Moreover, if all configurations also appear
with the same weight, as one would expect for high
delocalization in a confined region, then the net spin wave
function is the maximally symmetric, or ferromagnetic,
state. Consequently, in bcc He, a bipartite lattice, a va-
cancy would be surrounded by a ferromagnetic "droplet. "
This droplet description of the polaron was originally
worked out by Andreev [4] and Heritier and Lederer [5].

A very different picture of hole motion in the strongly
interacting limit was introduced by Brinkman and Rice
[6]. They argued that hole motion that does not restore the
spin configuration contributes with less statistical weight
than a more restricted motion involving self-retracing
paths. While neglecting all but the self-retracing paths
gives a good approximation to the density of states,
polaron formation is missed completely. The latter, in the
Brinkman-Rice treatment, is understood as a phenomenon
occurring in the tails of the hole band.

In this Letter we study the thermodynamics of a hole on
the square and bcc lattices in a range of temperatures that
extends from high temperatures, where the Brinkman-Rice
approximation is valid, down to temperatures low enough
for the droplet description to be appropriate. We find that
the crossover between these regimes is quite abrupt and is
marked by large oscillations in the heat capacity.

Our simulation method samples graphs contributing to
the high-temperature expansion of the partition function Z;
this approach has also been used by Handscomb [7]. Each
graph may uniquely be identified with a closed path taken
by the hole. For a system of N sites and N —1 spin-S
fermions, the partition function can be written as a sum
over paths p:

z (—p)"
sp, (1)

np!

where p = t/T, A = N2 ', and n„(taking the values
0, 2, 4, 6, . . .) is the length of path p. The "spin factor" s~
is given by (2S + 1) 1 ~ ' "1, where c„ is the number
of cycles in the permutation of fermions induced by
moving the hole around path p, visiting vp sites; sp
takes into account the fact that not all configurations of
the spins visited by path p contribute to the trace. We
restrict ourselves to the spin-2 case in this Letter. For the
self-retracing paths in the Brinkman-Rice approximation,
cp = vp —1, and the spin factor is unity. On bipartite
networks, where only even np appear, all the terms in

(1) are positive and can be sampled by Monte Carlo
techniques.

A refinement of this approach [8] resums (1) to give

Z—= P W(np, P)ski, (2)
p/

where the prime on p denotes that only paths having no
consecutive direction reversals, or "hair, " are considered;
n„ takes the values 0, 4, 6, 8, . . . . The functions W(n~, p)
take into account all possible ways of adding hair to a hair-
less path p' by inserting self-retracing paths of arbitrary
length at all points of the hairless path; they depend only
on the length of the path, np . This resummation takes ad-
vantage of the fact that the spin factor depends only on the
hairless part of the path. The Brinkman-Rice approxima-
tion corresponds to the "hairless part" being a single point
(n„= 0). The functions W(n„, p) are easily computed
and tabulated using generating functions [9].

To illustrate the Monte Carlo method, we show how the
energy is computed; the manner in which the heat capacity
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and the susceptibility are computed is analogous, though
a little more complicated. The energy is given by

8 lnZ
(3)

g„[W'(np, P)/W(np, P)]W(np, P)sp

+~i W(n„l, p)s„l
where W' = rlWirlP, all the temperature dependence
being in the W functions. As suggested by expression
(4), a Monte Carlo approach involves sampling hairless
paths p with W(npf, P)s~ as their statistical weight,
while averaging the quantity W'(n„, P)/W(n„t, P). The
ensemble of hairless paths can be sampled in the usual
way, by performing elementary moves that modify the
path, and then accepting or rejecting the new path as
detailed balance dictates.

We have adopted elementary moves that change n~
by ~2, ~4, or switch the order of two consecutive,
noncollinear hops of the hole (leaving n„i unchanged). As
the paths get quite long at low temperatures, it becomes
costly to recompute the spin factor after each move. We
have therefore implemented an algorithm that is able to
calculate the change in the spin factor at a constant cost
in time as the temperature is lowered [9].

In contrast to the usual high temperature series expan-
sion technique, where a finite number of terms are cal-
culated exactly, the present method samples contributions
from potentially any term while identifying the statisti-
cally dominant paths. Equilibrium in the simulation is
established when the averaged properties of paths (length,
diameter, etc.) reach a steady state and may be consid-
ered "typical" of the given temperature. A typical path
for spin-z fermions on the square lattice at P = 111.11
is shown in Fig. 1 (bottom). The compact droplet shape
is in sharp contrast to a typical path for spin-0 fermions
at the same P, Fig. 1 (top). For $ = 0, of course, the
hole is simply a free fermion (in a filled band) and typical
paths are expected to appear diffuse.

In the droplet model, valid at low temperatures, the free
energy per hole is given by

F(r) = —yt +, + TN(r) ln(2$ + 1), (5)
kz(r)
2m

where y is the coordination number of the network, k(r)
is the wave vector of the hole when it is confined in a
circular (spherical) well of radius r, m* is the effective
mass of a free fermion at the top (or bottom) of the
band, and N(r) is the number of spins contained in a disk
(sphere) of radius r. Minimizing with respect to r and
substituting this r into the first two terms gives the energy
as a function of T. Differentiating with respect to T, we
then obtain the heat capacities: C,q„„, = (1.774. . .)p'~z
and C „=(3.755. . .)P't'.

The excess susceptibility of a hole relative to infinite
temperature is defined by

(6)

4084

l

L l Ul
l

where 5, is the total z component of spin. Within the
droplet model, the spins inside the droplet are treated
as a single spin of magnitude N(r)$. Using the re-
sults for N(r) given by the free energy minimization
above, we obtain Ay, q„a„= (2.184. . .)P and Ayb« =
(6.794. . .)P"t5. %'e note that Ay = 0 in the Brinkman-
Rice approximation.

Plots of Ag (Figs. 2 and 3) show two distinct regimes
with a clearly defined crossover temperature To. At To,
the steady increase in A~ upon lowering the temperature
appears to get arrested, forming a plateau. By inspect-
ing the hairless paths generated in the simulation, one ar-
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FIG. 2. Rescaled heat capacity C and excess susceptibility
Ag for one polaron on the square lattice. The transition to
a ferromagnetic droplet occurs at T0, shown by the arrow. The
error bars for Ag are smaller than the symbols.

FIG. 1. Effect of spin: Typical paths at P = 111.11 for (top)
spinless case and (bottom) spin-2 case. The thickness of a line
is proportional to the number of times the hole has traveled
along it.
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FIG. 3. Rescaled heat capacity C and excess susceptibility
Ag for one polaron on the bcc lattice. The transition to a
ferromagnetic droplet occurs at To, shown by the arrow. The
error bars for Ay are smaller than the symbols.

rives at the following interpretation: Above Tp the paths
are diffuse and grow in size with decreasing temperature;
however, as Tp is approached, the paths suddenly begin
to "ball up,

" forming a compact cluster below Tp. The
droplet description is thus valid below Tp. Indeed, the
asymptotic forms given above are consistent with the be-
havior of the simulation data at our lowest temperatures.

The two regimes are also reflected in the heat capacity
data. At the highest temperatures the data follow the
Brinkman-Rice approximation and then begin to deviate
strongly as the hairless component of the paths grows.
As the paths begin to ball up, the heat capacity decreases
and reaches a minimum at Tp. The second maximum
thus formed corresponds to diffuse paths having the
greatest spatial extent. At this temperature we find that
l&Ag/BTl also has a maximum. Below To the heat
capacity grows in accordance with the droplet model.
Departures from the asymptotic forms are probably due
to surface effects. We note that droplet condensation
would not have been noticed by Lanczos [10] and exact
enumeration techniques [8] since the corresponding path
lengths involved (n„= 78) are too large.

In the millikelvin range, but well above the nuclear-spin
ordering temperature, solid 3He with vacancies may be
modeled by the U = ~ Hubbard Hamiltonian [11]. We
predict that experiments in this temperature range with ar-
tificially trapped vacancies would show the behavior of
Fig. 3. If the transfer matrix element t is taken to be
50 mK [12],we see that the ferromagnetic droplet will be-
gin forming below 5 mK (To = 0.1t for the bcc lattice).
Growth of the droplet below this temperature would be
very limited, due to the onset of spin-exchange antiferro-
magnetism near 1 mK. So far, experiments have not been
able to control the vacancy concentration at low tempera-
tures and the data have been inconclusive [13—17]. Given

the small value of Tp, it is unlikely that explanations based
just on the droplet model [12,18,19] could be success-
ful. The thermodynamic signature of polarons above the
droplet condensation temperature (To) might be more ac-
cessible. For a 1% vacancy concentration, our calculations
show that the heat capacity signal of polarons is at least as
large as the spin-exchange contribution for T ) Tp.

In summary, we have studied the U = ~ model of
the spin-polaron in two bipartite lattices by sampling the
important paths in the partition function sum. All self-
retracing paths are summed over exactly, and there are
no finite-size effects. The simulation method enabled the
exploration of a temperature regime that was inaccessible
from either the droplet approach or the Brinkman-Rice ap-
proximation. In going from high to low temperatures in
both two and three dimensions, the heat capacity shows
structure that could not have been predicted by previous
approaches. Experiments on solid 3He with trapped va-
cancies should exhibit this behavior.
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