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Effect of the Interface on the Properties of Composite Media
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We develop rigorous bounds on the effective thermal conductivity o, of dispersions that are given in
terms of the phase contrast between the inclusions and matrix, the interface strength, volume fraction,
and higher-order morphological information, including interfacial statistics. The new bounds give
remarkably accurate predictions of the thermal conductivity of dispersions of metallic particles in epoxy
matrices for various values of the Kapitza resistance. Corresponding results are obtained for the novel
situation in which the inclusions possess a superconducting interface.
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The preponderance of theoretical predictions of the
effective properties of two-phase composites neglect the
effect of the interface [1—4]. Interfacial effects are known
to be important in a variety of systems and can dramat-
ically alter the effective behavior [5—8]. For example,
contact electrical or thermal resistance at the interface
(due to roughness) can significantly decrease the effective
conductivity and debonding at the interface can erode the
effective elastic behavior of the composite. This problem
is challenging both experimentally and theoretically. Ex-
perimentally it is difficult to measure interfacial properties
in situ or to construct model systems in which the inter-
facial properties can be systematically controlled for the
examples cited above. Previous rigorous predictions of
the effective properties that incorporate the interface are
not accurate because they do not account for nontrivial
microstructural information.

In this Letter, we present a means to obtain sharp, rig-
orous bounds on the effective properties of a class of
composites in terms of the interfacial strength and cru-
cial microstructural information about the interface. We
begin by choosing the problem of determining the effec-
tive thermal conductivity o., of a dispersion of spheres
since there exist accurate experimental measurements of
cr, for such composites in which the interfacial resistance
is of the Kapitza type described below. Our bounds give
remarkably accurate predictions of the effective thermal
conductivity of suspensions of equisized copper spheres
in epoxy matrices for various values of the Kapitza resis-
tance. We will also present results for the novel situation
in which the spheres possess a superconducting interface.
Finally, we will discuss how to apply the methodology to
study other microgeometries and other effective properties
of composites with imperfect interfaces.

We develop rigorous bounds on o, by using classi-
cal minimum energy principles and by generalizing the
cluster-expansion approach of Torquato derived originally
for perfect interfaces [9]. Consider an arbitrary random
arrangement of equisized spheres of radius a and conduc-
tivity o.2 in a matrix of conductivity o.&. The interfacial

strength is introduced by first examining a more general
three-phase composite of a similar dispersion in which the
spheres possess a concentric coating of thickness 6 and
conductivity o, . By ultimately passing to the limit that
6 ~ 0 and that either o., ~ 0 or cr, ~ ~, we recover the
dispersion of interest in which the interfacial property is
concentrated on a surface of zero thickness and character-
ized by the dimensionless parameters R and C defined as
follows: in the resistance case,

6
R —= Rcr2/a, with R =— lim

6~0
S

crs ~0

and in the conductance case

C —= C/ot, with C = lim o, 6. (2)
(rs ~M

In general, 0 ~ R ~ ~ and 0 ~ C ~ ~, with R = C =
0 corresponding to the perfect interface, i.e., when there
are no jumps in the temperature T and normal component
of the heat flux j„across the sphere-matrix interface. For
R ~ 0, T jumps across the interface. By contrast, for
C ~ 0, j, jumps across the interface. To our knowledge,
the conductance case has not been studied before in the
context of composite materials [10]. The dimensional
quantities R and C are experimentally measurable as
described below. We show below that there are critical
values of both R and C at which the effective conductivity
o., equals the matrix conductivity crt, i e., the inclusions.
are effectively hidden

At this stage of the analysis, we do not pass to the dis-
tinguished limits (1) or (2). Let the aforementioned three-
phase composite be exposed to an applied temperature
gradient, and let cr(r) be the local conductivity at position
r, T(r) be the local temperature field, E(r) = —VT(r)
be the irrotational intensity field, and J(r) = o.(r)E(r) be
the solenoidal heat flux field. The effective conductivity
o., of the composite can be defined through the average
energy dissipation per unit volume U given by

U = 2o.,(E(r)) (E(r)) = 2o, '(J(r)) (J(r)), (3)
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where angular brackets denote an ensemble average.
The complexity of the microstructure prohibits one from
obtaining the local fields exactly and hence we resort to
variational principles. The principle of minimum potential
energy enables one to bound o, from above by construct-
ing irrotational trial fields E with (E) = (E), regardless
of whether the associated fIux is solenoidal. Similarly,
the principle of minimum complementary energy enables
one to bound o., from below by constructing solenoidal
trial fiuxes J with (J) = (J), regardless of whether the as-
sociated intensity is irrotational.

In order to proceed, one must construct trial fields that
account for the complex interactions between the spheres.
Following Torquato [9], we base our trial fields on the
solutions of the single-inclusion boundary-value problems
and find the following optimized bounds:

(J'"/ ) (J"'/ )
-'

(J(1l J(1l / (r)
(o-E(ll) . (o-F(t))

( )
&

„, „,) ()
The trial fields E~]) and J~') are the contributions to

!

the intensity and Ilux fields (in excess of their average

fields) due to single-body interactions from N coated
spheres [11]. Furthermore, for a general property b,
(b) bl@] + b2@2 + b, P„where P], P2, and
are the volume fractions of the matrix, inner spheres,
and coatings, respectively. The ensemble averages are
multidimensional integrals involving two- and three-point
spatial correlation functions [9]. Incorporation of such
nontrivial microstructural information coupled with the
rational-function form of the bounds (4) enables one to
obtain sharp estimates of cr„even for large inclusion
volume fractions and high phase contrast.

We first state and discuss our results for the resistance
case and subsequently describe the conductance case.
After considerable simplification of the integrals of (4) in
the limit (1) (using the same techniques of Ref. [9]), we
find the following: Upper bound in resistance case:

~ AU(R) = 1 + (n —1)@2—

BU = @z[—3Rn + @](n —1 —R) (1 —n)], (6)

CU = 9nR + 9R + 3@][(n —1) —R ] + (n —1)([@](n—1 —R) + 3R] + 2'@](n —1 —R) ). (7)

Lower bound in resistance case:

where

oe 1 —n + 3R~ At(R) = 1 + 4z—BL

Cl

@Q(2$][R(4n —3R —4) —(n —I) ] —6nR)
1

C~ —a (a —1 —R) 6t6) + ——1) (4Q, + 2gpP, ) + 6aR(a + 2(R + 1) ]

+ nR@z (n —1 —R) —+ 3$z(1 + @2) + 24(n —1 —R) (R + 1) + 12(n —1 —R) @2 . (10)
9

The dimensionless bounds AU(R) and AL(R) depend
not only on the dimensionless resistance R defined by (1),
but the sphere to matrix conductivity ratio n —= o.2/o. ],
the phase volume fractions (t)i and Pz = 1 —@i, and a
known microstructural parameter gz [3,4]. The parameter

is a threefold integral over a three-point spatial
correlation function and has been computed for a variety
of dispersions [4]. In evaluating the integrals of (4)
leading to bounds (5) and (8), the one-body contributions
to previously studied [12] surface-particle and surface-
particle-particle correlation functions also arise but these
integrals can be obtained analytically in terms of volume
fractions. See Ref. [13] for details.

To summarize, the bounds (5) and (8) for nonzero R
ultimately can be expressed in terms of the same mi-
crostructural information required to compute the perfect-
interface case. Indeed, when R = 0, the bounds coin-
cide exactly with the perfect-interface bounds of Torquato
[9] which are always above the bounds for nonzero R
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since they are monotonically decreasing functions of R,
i.e. , AU(R) ~ AU(0) and At. (R) ~ At (0). Hashin's [8]
bounding procedure does not incorporate this level of in-
forrnation but instead contains only simple average infor-
mation; e.g. , his procedure yields the lower bound

o., /o. ] ~ (I + (1 —n + 3R)@z/n) (11)
which is just the harmonic average of the different phases
and identical to the first two terms of our lower bound
(8). The correction Ft/FL that incorporates nontrivial
microstructural information is significant and serves to
tighten the bound. Lipton and Vernescu [14] found an

upper bound with the same level of information as con-
tained in (11). They also found a lower bound requiring
additional information about the effective conductivity of
a similar suspension of insulating spheres in a conducting
matrix, which must be experimentally measured or rigor-
ously bounded from below.

Interestingly, the bounds AU(R) and At (R) coincide
and equal unity for n ) 1 when the dimensionless resis-
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tance takes on the critical value R, = u —1, i.e., the ef-
fective conductivity o, exactly equals the matrix conduc-
tivity o.&. When R = R„ the inclusions are effectively
hidden. The monotonicity of AU(R) and Al. (R) ensures
that o., ( o ~ for R ~ R„which implies that the addi-
tion of conducting spheres in the matrix (cr ~ 1) reduces
the conductivity o, below that of the matrix conductiv-
ity. The critical value R, is directly related to the notion
of a "critical radius" a, defined to be the radius required
to "hide" the particles [5,7,14]. From (1) it is seen that
a, = R~, /(n —1).

An interesting situation occurs when the spheres are su-
perconducting relative to the matrix (i.e., n = ~) such
that the ratio u/R remains finite. Here we can com-
pare our bounds to the experimental results of de Araujo
and Rosenberg [15] who measured the effective thermal
conductivity of random dispersions of metallic spheres
in epoxy matrices for several values of the interfacial
Kapitza resistance at liquid-helium temperatures. Kapitza
resistance arises due to the acoustic mismatch at the in-
terface of dissimilar materials that increases dramatically
as T (where T is temperature) for T ~ 20 K and hence
can be conveniently controlled by simply varying T. Val-
ues of the Kapitza resistance, exactly equal to the dimen-
sional resistance R defined by (1), were obtained at differ-
ent temperatures by measuring the ratio of the temperature
drop to the heat Aux across a thin metal-epoxy sandwich.

Figure 1 compares effective conductivity data of a
copper/epoxy composite versus the particle volume frac-
tion P2 for two different values of temperature (or n/R)
to our lower bounds using a Monte Carlo evaluation of g2
for a random array of hard spheres [16]. Our lower bound
predictions [17] agree remarkably well with the experi-
mental results. The perfect-interface lower bound is also
included to show how dramatically the effective conduc-
tivity drops due to interfacial resistance. It is noteworthy
that an approximation formula due to Chiew and Glandt
[5] also predicts the data well.

Figure 2 compares our bounds for a random dispersion
of conducting inclusions with o.q/trt = 10 and R = 30
to corresponding perfect-interface results. The bounds are
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rather tight. Note that since R ~ R, = 9, a thin insu-
lating coating can make relatively conducting inclusions
behave effectively as insulating inclusions.

We now state and discuss the bounds in the instance
where the spheres possess an infinitesimally thin super-
conducting coating. Again, after considerable simplifica-
tion of the integrals of (4) in the limit (2), we find the
following: Upper bound in conductance case'.

~ DU(C) = 1 + (u + 3C —1)$2 —,(12)
FU

where

EU = @2ipt[C(5 —5n —6C) —(n —1) ] —3Ci,
(13)

FIG. 1. The scaled effective thermal conductivity o., /o. t vs
the particle volume fraction @q. Experimental data [15] for
copper spheres of radius a = 50 p, m in epoxy for T = 4 K
(n/R = 14.8) and for T = 3 K (n/R = 4.93) compared to
lower bound (8). Also included is lower bound for perfect
interface (R = 0). All bounds use f2 from Ref. [14].

FU = 6C + (n —1 + 2C) [3@t + (n —1) (2$2@t + @t)] + C$2(n —1 + 2C) —+ 3/2(1 + Q2)

+ 3C[@t(n —1 + 2C) + 1]

Iower bound in conductance case:
Oe 1 F.I~ DL(C) = 1 + ——1
O) A'

where

El. = $2[2@t(n —1 + 2C) (n —1) + 6C],

FL = 6n 13C + 6C + $2[(n —1) —4C ]) + (cr —a ) i4[pt(n —C —1) —3C$2]
+ 2gpgt(n —1 + 2C) ).

(14)

(15)

(16)

(17)
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FIG. 2. Comparison of the bounds (5) and (8) for two
different values of the dimensionless resistance R vs sphere
volume fraction Pq for n = 10. All bounds use gz from
Ref. [14]. Here critical value R, = 9.

The dimensionless bounds DU(C) and DL(C) depend
on C, @t, Pz and g2 described earlier. When C = 0, we
recover the perfect interface bounds of Torquato [9]. The
bounds DU(C) and Dt. (C) coincide and equal unity for
n ~ 1 when the dimensionless conductivity takes on the
critical value C, = (1 —n)/2. At this value the spherical
inclusions are effectively hidden.

Figure 3 compares our bounds for a random dispersion
of insulating inclusions with o.2/crt = 0.1 and C = 1

to corresponding perfect-interface results. It is seen that
since C ) C, = 0.45, a thin superconducting coating can
make relatively insulating inclusions behave effectively as
conducting inclusions.

By mathematical analogy, the results obtained here
translate immediately into equivalent results for the effec-
tive electrical conductivity, dielectric constant, and mag-
netic permeability. Indeed, the methodology outlined here
is general in that it enables one to determine the effect of
the interface on any effective property that can be charac-
terized by minimum energy principles„e. g. , elastic mod-
uli, thermal expansion coefficient, and thermoelectric mod-
uli. Moreover, nonspherical inclusions with a sige dis-
tribution can be treated analytically provided that the rel-
evant fields are known for a coated inclusion in an infi-
nite matrix. Such solutions are already available for long,
oriented cylinders and for arbitrarily shaped ellipsoids in
the conduction, elastic, thermoelastic, and thermoelectric
problems. An important conclusion is that although the
property bounds in the limit that the coating thickness goes
to zero depend on, among other quantities, interfacial sta-
tistics, they can be written in terms of the same microstruc-
tural information as required for the perfect interface.

The authors thank L. Gibiansky, Y. Chiew, and J. Quin-
tanilla for helpful discussions. This work was supported
by the Air Force Office of Scientific Research under Grant
No. F49620-92-J-0501.

FIG. 3. Comparison of the bounds (12) and (15) for two
different values of the dimensionless conductance t" vs sphere
volume fraction @2 for n = 0.1. All bounds use g2 from
Ref. [14].Here critical value C, = 0.45.
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