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Spatiotemporal Dynamics of Lasers with a Large Fresnel Number
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We measure the local intensity and the intensity cross-correlation function of patterns emitted by
a CO2 laser with a Fresnel number around 60 and find evidence of weak turbulence. We show
theoretically that the spatiotemporal dynamics of such a laser can be governed by two fields. One
leads to a "turbulent" state principally through phase fluctuations, whereas the other yields a periodic
modulation in space and time of the intensity. This can explain why the intensity of the laser is locally
chaotic but the time-averaged intensity pattern retains the global symmetry of the system.

PACS numbers: 05.45.+b, 42.55.—f, 42.60.Mi, 47.20.Ky

Spatially extended dissipative systems have been the
subject of intensive studies during the last 30 years [1].
Pattern formation in lasers has been observed since their
discovery [2], but has recently regained interest within
the development of nonlinear dynamics [3]. Experimental
and theoretical studies of spatiotemporal structures have
been most successful in the cases in which there is a low
Fresnel number [4,5]. Indeed, the richness of the dynam-
ics of few modes yields a quantity of experimental and
theoretical results. On the other hand, it is difficult to
find experimental results in the literature for lasers op-
erating at high Fresnel number. Previous works showed
only the existence of relatively complex patterns in the
time-averaged intensity distribution [6] without indica-
tions about the degree of complexity and/or the physical
origin of such particular spatial structures.

In this paper, we present detailed experimental measure-
ments of the dynamical behavior of a similar laser that
indicate strong differences from recent theoretical pred-
ications. We find neither vortices nor grain boundaries.
Consequently, we provide an alternative interpretation and
approximation to the standard Maxwell-Bloch model that
describes the evolution and characteristics of patterns ob-
served in our experiment. Our theoretical results show that
the formation of structures is controlled by two generic
spatiotemporal instabilities. The first is a long-wavelength
instability that is related to the phase fluctuations of the
field. It is described by a Kuramoto-Shivasinsky (KS) type
equation [7]. The second is a short-wavelength instability
of the field amplitude. It corresponds to a Hopf bifurca-
tion selecting a well-defined wavelength and it is described
by a complex Swift-Hohenberg (CSH) equation [8]. As a
result, the laser intensity presents a turbulent behavior, at a
short time scale, due to the dynamics of KS. However, the
time average patterns display the typically organized struc-
ture of the CSH equation. This picture is an example of a
turbulent field which recovers symmetry on average. Sim-
ilar phenomena have been observed in recent experiments
in hydrodynamics in which the pattern is very irregular in
space and time, but the average time pattern recovers the
symmetry of the boundary [9].

The experimental setup we use is analogous to the one
described in Ref. [6]. An example of the time-averaged
transverse pattern emitted by a Fabry-Perot CO2 laser with
an intracavity lens resulting in a Fresnel number (F„)of
60 is shown in Fig. 1(a). This appears as an ordered
structure of concentric rings when the laser is perfectly
aligned. If the system is not perfectly aligned we observe
structures such as squares, or even more complex patterns.
However, a11 the measurements described below apply
qualitatively to any observed pattern. These patterns seem
to show a relatively large number of points where we could
assume the presence of topological defects [10]. However,
we must take into account the nonlinear response of the
plate which may have led to confusion over evidence
for defects [6]. But, if we measure the intensity profile
along a diameter with a HgCdTe detector, we note that the
intensity is much larger than zero at every spatial point and
time in the region of interest. The temporal oscillations,
which represent about 10 lo of the dc signal in the electric
field amplitude, are much greater than the noise. Thus
the experimental intensity distribution of Fig. 1 can be
interpreted as an almost constant intensity modulated in
space by a periodic structure and weakly modulated in
time. For low F, the periodic temporal oscillations are
at frequencies that vary from 400 kHz to 2 MHz. As F„
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FIG. 1. (a) Average intensity pattern observed on an infrared
image plate. (bl) Intensity vs transverse coordinate measured
with a rotating mirror which deflects the beam onto a fast
HgCdTe detector. The pattern is here composed of four
concentric rings. The detector linear size is 500 of the pattern
width. (b2) ac component of the intensity at a point.
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FIG. 2. (al) The power spectrum, averaged over 200 acquisi-
tions time, of the local intensity. (a2) The same power spec-
trum minus the power spectrum of the noise. There is a broad-
band peak near 150 kHz and its harmonics. (bl) Plot of the
normalized spatial correlation function. (b2) average intensity
measured from the rotating mirror, with which we can compare
the correlation length with the radius of the beam.

is increased, the oscillations at high frequency disappear
while a large peak develops in the power spectrum near
150 kHz. This frequency is of the order of magnitude of
the relaxation oscillation frequency when our CO& laser
operates single mode.

Moreover, we measured the spatial correlation function
to distinguish the spatiotemporal behavior reported in this
Letter from low-dimensional chaos as was done for a
photorefractive oscillator [11]. We used two detectors
to calculate the spatial correlation of the pattern. The
first detector measures the intensity at the center of
the pattern while the second one measures the intensity
of the beam deflected by a rotating mirror. As the
rotating mirror moves very slowly, we can measure the
maximum over time of the cross-correlation function
between signals from two different points. We take
a normalization such that, if the signals are perfectly
correlated at any delay time, then the value is 1; if they
are uncorrelated the value is 0. We have measured this
spatial correlation for different patterns as the Fresnel
number is increased. For patterns which have periodic
oscillations (low pump or low Fresnel number), the spatial
correlation function is equal to 1 everywhere. When the
complexity is increased, the temporal behavior of the
intensity becomes chaotic with a small number of modes.
The spatial correlation is no longer equal to 1 everywhere,
but decreases with oscillations. But in the case of high
Fresnel number, the shape of the correlation function
changes dramatically to that found in Fig. 2(b), with a
narrow peak. Experimentally we find that the correlation

1
length (width of the peak) is about 6 of the width pattern.

This behavior is not predicted by the approximate the-
oretical approaches used up to now in optics. Previous
work based on the Ginzburg-Landau equation [10] for
negative detuning (and its extension for positive detun-

ing [12]), and for class B lasers [13], when restricted to
an almost infinite Fresnel number near the lasing thresh-
old, predicted defects. One reason for the disagreement
between previous theories and our experiment is the finite
size of real experimental systems, which gives a small

Ap(k) = kpk ——k + O(k ),2
(2)

where kp = K6(a/2) and cp = K[C(1 + 6 )a ]/2(Ep( .

If 6 ) 0, this phase mode is always unstable since
Ap(k) ) 0 for long-wavelength perturbations. This global
phase is an important variable for the dynamics and it
obeys a KS type equation.

(ii) If yii « K, y~ (for class B lasers such as CO&
or Nd:YAG lasers [15]), there is a spatially extended
Hopf bifurcation with a well-defined wave number qp (qp
is much larger than kp). Thus we have two complex
conjugate eigenvalues given by the following Taylor

2.expansion around qo.

A&(k) =(p, + ifl) —iv(qp2 —k )
—n(qp —kz)2 + (3)

where p„, A, and v are real coefficients while n is
a complex quantity. Thus in the neighborhood of the
bifurcation the dynamics is governed by a complex

Fresnel number at threshold. However, theories that take
into account the finite size predict transverse standing
waves near the threshold [14] that we do not find in the
experiment. Hence, none of the previous theoretical ap-
proaches explains our simple direct observation of the ab-
sence of defects and almost constant intensity in space
with a weak spatiotemporal modulation of the intensity.

The starting point for our theoretical interpretation of
these experimental results is the Maxwell-Bloch (MB)
equations in a dimensionless form, for the slowly vary-
ing envelopes of electric field E(x, t) [x = (x, y)], polar-
ization P(x, r), and population inversion D(x, t):

ar E = —K[(1 —
r 6) —i —,V']E —KCP; (1a)

r)rP = —ye[DE + (1 + i 6)P]; (lb)

r)rD = —yii[ —&(E*P + EP*) + D —1]; (lc)
where ~, y~, and y~~ are the decay rates for F, P,
and D, respectively. For modeling a CO2 laser we take
yg/K = 5, yii/K = 001, and K = 2 && 10 s '. The
pump strength is denoted by C (between 2 and 3 in
the experiment, where C = 1 at threshold), ri is the
cavity detuning; a is inversely proportional to the Fresnel
number; and V is the transverse Laplacian.

To explain the experimental profile found in the center
of Fig. 1(b) by an approximate solution of the MB
equations, we consider a homogeneous solution where
~Ep~ = C —(1 + ri ). The phase of Ep is not fixed,
since the MB equations (1) are invariant under a global
phase change F. ~ Fe'~', together with P ~ Pe'@", for
rtrp an arbitrary real number.

We perform a linear stability analysis of homogeneous
solution in Fourier space. It appears that analytic solutions
are not possible, yet we note that we have the following.

(i) One real eigenvalue, associated with the phase
invariance of (1), given by (near k = 0)
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field which obeys a CSH equation. The frequency
0 of the Hopf bifurcation is roughly given by
$2&y~~!Eo! /(I + Bz), which is obviously the relaxation
oscillation frequency for all class B single mode lasers.
This Hopf frequency will be a characteristic of the
spatiotemporal dynamics of class B lasers.

(iii) The last two complex eigenvalues have very large
negative real parts and they are roughly given by A2
—y~(1 ~ i6). Thus the associated eigenmodes do not

play a relevant role in the dynamics (except for class C
lasers).

Therefore the dynamics of a class 8 laser originating
from a homogeneous nonzero state of the field will be
governed by a real field P and a complex one A. The
linear dynamics is given (in Fourier space) by ))),Pt. =
Ao(k)gk and c),Ak = At(k)At. . The physical variables are
functions of P and A. Taking the electric field amplitude

!

!E!as an example, we have

1+ ~' 2;n) * —;a~= 1 —— 1 + V P —i(Ae' ' —A*e ' ') + O[IAI, (VP) ].2 2

I&ol 4 I&ol'
(4)

The linearized problem and symmetry arguments (invariance under the transformation A ~ Ae'~' and P ~ P + Po)
can be used to obtain directly the general form of the equations:

d, p = koV p———V p + ct(VQ) + cz!A!
2

(Sa)

&&A = pA —iv(qo + V )A —n(qo + V ) A —[Pt!A! + Pz(V@) ]A + P3V@ . VA; (Sb)

where ci and cz are real while Pt, Pz, and P3 are
complex. The nonlinear terms ensure the saturation. The
phase equation (5a) describes well the long-wavelength
behavior in the transverse direction of any laser, since
it is directly related to the phase invariance of the
electromagnetic field.

Then the general behavior of the electromagnetic field
depends on the signs of ko and p, . Four different cases
could occur:

(i) If ko & 0 and p, & 0 (i.e., for lasers with 6 & 0),
the steady-state solution is stable.

(ii) If ko ( 0 and p, ) 0 Eq. (Sa) is purely diffusive
and V@ goes to zero. Equation (5b) creates a periodic
structure which oscillates in time. It is important to
note that ko ( 0 implies that the detuning 6 ( 0 which
is precisely the case where the longitudinal monomode
approximation is usually not valid since the transversal
modes of a neighboring longitudinal mode enter the gain
curve in lasers with a large Fresnel number.

(iii) If ko ) 0 and p, ( 0, the KS equation becomes
very irregular in space and time. The observed state
is the so-called "phase turbulence" [7,16]. However,
the temporal mean values [(V P) and ((VP) )] become
constant in space (the former is zero). Consequently, the
signal !E(x,t)! [given by Eq. (4)] displays a complex
behavior in time, but the time averaged pattern appears
homogeneous in space.

(iv) If ko ) 0 and p, ) 0 (6 ) 6,)—the most inter-
esting case —then the two instabilities occur. The phase
P has a dynamics analogous to the numerical simulations
of KS. The instability associated with the CSH creates
a periodic structure in the amplitude of the field. This
structure oscillates in time at A (and harmonics), but its
lamellar characteristic structure is dismantled by the dy-
namical evolution of P. As a consequence, A shows a

complex spatiotemporal behavior. If we seek a stationary
solution of (Sb) in the form A = !A!e'i' ( in which all the
coefficients are taken as real and P3 = 0) we find that A

depends on the "stochastic variable" P as (Pz —= RePz)
IAI' —p —Pz (V4)' (6)

The instantaneous value of A = !A!e'i"' looks more
disorganized than the mean value (!A!e'~0 ) because of its
explicit dependence on the turbulent field VP. The mean
value instead recovers the periodic structure

l~)

&» —
(M~

— ' ((&6)') l""*—""*,
2~p, )

since ((VP) ) is constant. We illustrate our analytical
arguments in Fig. 3 through a direct numerical simulation
of the coupled equations (5a) and (5b).

A heuristic explanation of measurements of the cross-
correlation function can be given in terms of the phase
dynamics as the Fresnel number is increased. The number
of degrees of freedom of the KS equation grows as
NKs —(Rk ), where R is the transverse radius of the

a):~---:-::-----~:,:.---.-::-:-::-,--:,.

FIG. 3. Numerical simulations of the model with all the
coefficients real. (a) The instantaneous value of ReA. The
initial conditions are rolls parallel to the x axis. (b) The
temporal average (A).
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laser beam in the cavity. Moreover, WKs is proportional
to the Fresnel number (F„)of the laser cavity. For
small F„,such that WK& = 1, the KS equation leads to
low-dimensional chaos. In this case, the spatial cross-
correlation functions decay slowly, since they are only
determined, typically, by the long range order as in
crystals. However, for a large Fresnel number, the
solutions of the KS equations become turbulent and the
correlation function is screened by a factor e (Ax
the spatial separation of two points), with A, —k

which depends on the Fresnel number as A, /R —I/QF„.
For relatively large Fresnel number, the correlation length
decreases, becoming much smaller than R. The resulting
state may be called (weak) optical turbulence. The case
(iv), for which the two instabilities occur, may explain
the spatiotemporal behavior experimentally observed. We
observe complex spatiotemporal oscillations around the
relaxation frequency. Thus, in the framework of the
model, we are in the case (iv), where we can explain
the oscillations and the losses of spatial and temporal
correlations. However, one may verify experimentally
phase turbulence in a laser with measurements of the
phase of the electromagnetic field. In this case we should
see that the phase fluctuations are coupled with amplitude
instabilities.

In conclusion, we have shown experimental evidence
of the absence of "defects" in the transverse intensity
pattern of a laser with F„=60. We show the appearance
of chaotic oscillations centered around the relaxation
oscillation frequency, and the loss of spatial correlation.
We also show that these results can be explained as a
characteristic of the usual Maxwell-Bloch equations when
two "fields" are involved in the dynamics, one a scalar
field obeying the Kuramoto-Shivasinsky equation and the
other a complex field which obeys a Swift-Hohenberg
equation.
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