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We present for the first time numerical and analytical calculations for the nonlinear interaction of
three quantized waves all sizably excited from the beginning and having different phase relations. With
a Kerr-state ansatz for the signal we get strongly sub-Poissonian photon statistics and conclude on

similar effects by initially entangled states.
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Nonlinear interaction between light waves has been
studied since the laser came into existence in 1960. Shortly
after this a comprehensive paper appeared [1] that de-
scribes three-wave and four-wave interactions in nonlin-
ear media and gives the exact solutions for the classical
coupled-mode equations. This work is now at the heart of
nonlinear optics and the basis of many quantum optical in-
vestigations. Let us confine ourselves to the three waves,
ie., ,\/(2) media, and consider the general case that all waves
are excited at the beginning of the interaction. We limit
ourselves to exact resonance ws = w; + wy, where wj is
the frequency of the pump and w; and w; are the frequen-
cies of the signal and idler, respectively. In addition, we
assume phase matching of the wave vectors, which pro-
vides the justification for retaining only these three waves
or modes.

An important approximation that allows an analytic so-
lution also in the quantum case is the so-called parametric
one, where the strong pump wave is treated as a ¢ number
and any depletion is neglected, while the relatively weak
signal and idler can change considerably [2]. This ap-
proximation is easily applied but its justification is hard to
show [3]. Most quantum optical investigations with y?
media are carried out in this approximation [4].

However, an arbitrary preparation of all three waves is
now experimentally possible with different phase relations
between them. Classically the solutions are well known,
but quantum mechanically we have to resort to numerical
methods [5]. In their first calculations Walls and Barakat
started with Fock states, i.e., without setting any phase
relation. By now these initial states have been replaced by
coherent states, but at least one mode has still been in the
vacuum. This vacuum mode then becomes excited and its
phase adjusts automatically to the right phase difference.
Thus also with two excited coherent states the manifold
of phase relations cannot be explored.

Here we present for the first time numerical and ana-
lytical calculations for the quantum case, where all three
modes are considerably excited from the beginning, and
choose a particular phase relation between them. A co-
herent state with a mean photon number exceeding 5 has

0031-9007/95/75(22)/4019(4)$06.00

already a sufficiently sharp mean phase [6]. Hence starting
with such states in all three modes allows one, therefore, to
choose an arbitrary initial phase relation between them for
nondegenerate three-wave interaction. This is compared
with the classical solutions and applied to a specially pre-
pared signal, which under sum-frequency generation then
shows strong sub-Poissonian photon statistics.

We start with the Hamiltonian for the nondegenerate
three-wave interaction in the interaction picture

Hine = hx(abet + a'bte), (1

where ¢ (¢1) is the annihilation (creation) operator of
the pump mode and a and b denote the correspond-
ing operators for the signal and idler, respectively. The
coupling constant x contains the nonlinear susceptibil-
ity y®. This Hamiltonian (1) describes phase-dependent
and phase-insensitive amplification including saturation,
sum-frequency generation, and frequency conversion. In
addition, (1) is also the interaction for special quantum ef-
fects as two-mode squeezing and correlated beams for vari-
ous interference experiments. Even the Jaynes-Cummings
model is a special case of (1). So any new effect discov-
ered in (1) can extend our understanding of this fundamen-
tal Hamiltonian.

Because the system (1) can only be numerically solved,
we limit our analytical treatment to a short-time expan-

sion. For the signal mode operator we find from the
Heisenberg equations of motion
R Iy SN 1) P SO
a(t) =a — iktb'e + —-2—'——(6 ac — b'ab)
+ 0((x1)’), 2

where all operators without a time argument are taken at
t = 0. Equivalent expressions can be written for 4 and
¢. The signal photon number is then given by

ata@) = ata + ike@tba — atbte)
+ (kt)[eteata + bbY) — ata b'h]

+ 0((x1)*). (3)
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Assume now initially coherent states in all three modes

‘a>a{B>b|'y>c

then the expectation value of (3) results in

(@'(na) = lal + 2ctlallBllylsin(Ae) + «* X [lyPdal® + (817 + 1) = [alPIBI] + 0(<*F).

We call the linear terms in ¢ the coherent ones be-
cause they depend on the phase difference. If Ap =
©c — ©p — @, = —1/2, the signal starts getting atten-
uated, while for Ap = 77/2 the signal is first amplified.
Both values are distinguished insofar as the phase dif-
ference stays with them both quantum mechanically and
classically as can be seen in the following. In addition, we
consider the phase difference A¢ = 0, where all phase-
dependent terms in (5) disappear and the direction of the
process is given simply by the intensity relations (second
order term). We call this initial condition the out-of-phase
regime. Note further that the fluctuations enter (3) in the
second-order term by the commutation relation of the idler
operators. We need also the squared number operator
lat(na)P =ate +ata +i2xt@ta?e™d — at?abte)

+ ict(@aeth — athte) + o(k??), (6)
where we can confine ourselves to the first order of time
effects.

For three coherent states the disappearance of the first
order terms in (5) would result in the same effect in
the expectation value of (6). However, for more general
states, we can put these terms to zero in the photon num-
ber and nevertheless retain nonzero terms for the expec-
tation value of (6). This could give a strong tendency to
sub-Poissonian statistics. Note two possibilities for this
in (6). First, there are higher moments of &,&T and sec-
ond, due to some entanglement, any factorization of the
expectation values of the different modes may become
impossible. We will discuss both properties but focus on
the first. Eventually we should add that this short-time
expansion approach is by no means new [7]. However,
earlier investigations gave only second order of time con-
tributions to the fluctuations of signal or idler becoming
so super-Poissonian. Our approach is to show that there
can be first order of time terms that drive the signal to
strong sub-Poissonian statistics.

Because the case A¢ = 0 (no coherent interaction at
the beginning) is normally avoided even in the classical
coupled-mode equations [1], we should briefly discuss the
classical interaction. Introducing a scaled time by { = «t
we get for the classical amplitudes the equations

dM1 .

"d*z = —upu3sinf ,

duz .

ﬁ = T Uupus sm0,

d us .

d_f = upu Sinf , 7)

4020

(@ = lale’®, B = |Ble’®,y = |yle*),

4)

(5)

where u1, uy, u3 are the classical (slowly varying) ampli-
tudes of the signal, idler, and pump, respectively, and
0({) = ¢d3({) — ¢d2({) — ¢1({). The equation of mo-
tion for 6(¢) is

—;1? - 2 ;l‘ié;ln(uluzug). ®)
We neglect here any mismatch and mention three Manley-
Rowe relations m; = u% + u% my = u% + u%, ms =
u? — u3 that have their corresponding conserved quan-
tities in the quantum system described by (1). Thus
we can interpret u%,uz,ug as photon numbers in the
corresponding modes if we introduce a suitable rescaling
of the u; and ¢ [8] that does not change the form of the
equations. Hence (7) and (8) are the classical equiv-
alents of the Heisenberg equations of motion derived
from (1).

The advantage of (8) is that it can immediately be
integrated to give

ur(Quz(Husz($)cos[0()] =T
= 11 (0)u>(0)u3(0) cos[6(0)].
)

Note, however, that there are single equations for each
phase which are not solved by this approach [9]. As
an example, the equation for ¢({) reads d ¢({)/d ¢ =
(upusz/uy) cos and proves the change of ¢ for cosf #
0. With the help of (9) and the Manley-Rowe relations
the system (7) can then be integrated, which results in
the well-known Jacobian elliptic functions for the u?(¢)
(i =1,2,3).

The solutions of (7) depend decisively on I' given
in (9), and a cubic equation containing I" has to be
solved. For #(0) = 0 (equivalent to A¢ = 0) this is
done via a quadratic equation. The mutual relations of
the three roots determine whether the signal first increases
or not for #(0) = 0. Note that then the phase difference
changes in the direction that favors the energy exchange.
Simultaneously the single phases change much faster [9].

The quantum mechanical equivalent of (9) is the
expectation value of the interaction Hamiltonian (1).
Hence the subtle classical results have their quantum
mechanical analogs in the solution of (1). A detailed
discussion of it [9] shows also why the phase difference
stays at its value Ap = 7 /2 both in the classical as
well as in the quantum description and each single phase
keeps its constant value.

Here we illustrate these facts by our numerical re-
sults and then show the nonclassical features. Figure 1(a)
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FIG. 1. (a) Change of the signal mean photon number for the

initial state (4) with A¢p = 0 and A¢p = — 7 /2. The full lines
represent the quantum calculation of (1), while the dashed lines
show the classical solution of (7) and (8). (b) Q parameter (as
defined in the text) of the signal (joined) and idler for the initial
state (4).

demonstrates the behavior of the signal photon number
for the initial state (4) with |a| =6, |B] = 4, |y| =
3. Note that the period of the energy exchange is al-
most the same as for both A¢ = 0 and —7/2 even
though these amplitude parameters prevent a sizable en-
ergy transfer for A = 0. Both processes start with sum-
frequency generation, but the O parameter of the signal,
0 = [((ata)*) — (ata)*]/{ata) — 1, plotted in Fig. 1(b)
goes negative only after the second start of sum-frequency
generation, indicating strongly sub-Poissonian behavior
of the signal in the case A¢ = —a /2. This striking
effect is the central point of our investigation. Anal-
ogous effects were observed with the initial conditions
|a)alOdslyde, ladalB)s|0)e, where the initial coherent am-
plitudes could be as high as a = y = 8 starting with
difference-frequency generation [10] and o = 9,8 =5

generating first the sum frequency [11]. The phases in the
newly generated modes adjust in such a way that corre-
sponds to A¢ = /2, respectively.

Achieving a remarkable nonclassical effect after one
quasiperiod in three-wave interaction is physically very
interesting, but experimentally still unrealistic. Therefore
we tried to understand the mechanism of this effect and
to find ways to realize it within the first quasiperiod.
One method to get this without any entanglement at the
beginning is a Kerr-state ansatz for the signal mode and
coherent states for the idler and pump. This uses the
properties of a Kerr state [12] that

K<al&12a|a>l( _ a*la(Zeflalz(lfcoseﬂvilalzsin€+ie’ (10)

while

K(a'a”a>1< — a*e~|a|2(1~0056)+ila|2sine’ (11)
where |a )k is a Kerr state developed from a coherent state
and x(alafla)x = (alatei€@'?|a). In these equations
€ is a parameter that contains y® and the interaction
length. If we compare (10) and (11) the small phase
shift € introduced by the commutation relations becomes
important and leads for

®a + @b — ¢ — lal*sine = 0 (12)

to a nonzero first-order term in the expectation value of
(6), while the photon number has no such contribution.
The variance of the photon number is then

(at(mamPy — @t(wa@®) = lal?
+ 4xt|al?|Blly| sine
+ 0(x%t?). (13)

This equation shows for € < 0 a strong tendency to sub-
Poissonian statistics.

The disappearance of the first order terms in (5) with
the Kerr state in the signal at the phase difference (12) is
equivalent to a vanishing field strength in the Kerr state,
because the coherent pump and idler define a reference
phase for the signal. This is exactly the condition for
getting extreme sub-Poissonian statistics by interference
of a coherent beam and a Kerr-state field [13].

In Fig. 2(a) we plot the Q parameter of the signal for
the interaction (1) and the initial state ||a| = 6)¢||B| =
4),lvl = 3). imposing the phase relation (12). Already
a very short interaction time is sufficient to-result in strong
sub-Poissonian photon statistics. On the other hand,
the extremes obtained by interference [12,13] cannot be
reached because the phases move classically in this con-
figuration out of the position Ag = 0. This is illustrated
in Fig. 2(b). We should mention that we get a similar re-
sult if we start with ||a| = 4)x||B] = 3)sllv| = 6)., but
now with initial amplification of the signal for A¢ = 0.

Finally we return to the result in Figs. 1(a) and 1(b).
There is, of course, no Kerr effect at the restart of sum-
frequency generation. But our Kerr-state calculations
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FIG. 2. (a) The Q parameter of the signal as a function of

time for the Kerr-state ansatz in the signal and coherent states
in the idler and pump. The amplitudes are |a| = 6, |B] =
4, |y| = 3 and the phases fulfill Eq. (12) with € = —0.1. (b)
Outer Q-function contour lines (height 0.01) of the signal at
scaled times k¢t = 0.0,0.2,0.4,0.6 for the initial state (4) with
Ag = 0. The signal starts with a circular contour line. The
corresponding classical motion of the signal (up to the scaled
time 0.6) is plotted (in polar coordinates) in the insertion and
starts on the positive real axis.

teach us that there must be a first-order of time reduc-
tion effect of the photon number variance. However, this
is not conceivable in a disentangled state, because at this
moment we have (&) = (¢) = 0; i.e., the coherent pump
amplitude crosses zero. That the first-order terms in the
photon number vanish and only the first-order terms in the
expectation value of (6) survive follows also analytically
because the first derivative of the signal and idler pho-
ton number has to vanish here. Hence the entanglement
between signal and pump is responsible for this strong
tendency to sub-Poissonian photon statistics in Fig. 1(b),
which is discussed in more detail in [11]. This entangle-
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ment is generated in the first quasiperiod in Fig. 1(a), but
it might be possible to generate it in a different way in
order to use it as signal-pump initial state. Note that the
signal-pump entanglement is the result of a saturated am-
plification process and therefore a fundamental property
of this amplifier model. In this way it offers the possi-
bility to learn more about saturated amplifiers. Moreover,
we found [10] that during the following sum-frequency
generation the signal entanglement is strongly reduced so
that the signal ends up in almost a pure state with strong
sub-Poissonian behavior. This corroborates our interpre-
tation with the signal-pump entanglement and shows that
it can be used up.

In addition, we should concede that the nonclassical
character of the Kerr state (10) and (11) promotes the
occurrence of the sub-Poissonian character in Fig. 2(a).
However, at the start of the interaction (1) there is only
Poissonian photon statistics and no amplitude squeezing
because the expectation value of the Kerr field strength
vanishes at the phase position (12). A normal simple
absorption process would never result in such nonclassical
properties but on the contrary destroy them. In such a
way the depletion in signal and idler by sum-frequency
generation is similar to an interference process. A last
remark concerns the phase relation (12). The depletion
process would be phase stable for A¢p = — /2 but then
the Kerr state could only deliver an effect proportional to
€? in (13), while for (12) it is of the order €.
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