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Nonspreading Electronic Wave Packets and Conductance Fluctuations
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We find strongly localized wave packets tracing without dispersion the classical dynamics of a
Rydberg electron in a circularly polarized microwave field using a full 3D quantum calculation. These
wave packets are single eigenstates of the atom dressed by the microwave field and are very stable
against ionization. Their widths fluctuate with microwave amplitude and/or frequency realizing an
optical analog of the conductance fluctuations in mesoscopic systems. Similar behavior is observed
for linear microwave polarization. We show that such behavior is expected when classical nonlinear
resonances are important in an atomic system.

PACS numbers: 32.80.Rm, 05.45.+b, 42.50.Hz

The construction of long-living strongly localized wave
packets in atoms or molecules is very attractive for both
experimental and theoretical physicists [1]. Such a wave
packet, closely following a classical trajectory, is an
interesting object in studies of classical-quantum corre-
spondence. With the notable exception of the harmonic
oscillator, wave packets, as nonstationary solutions of
a time-dependent Schrodinger equation, i.e., coherent
superpositions of stationary eigenstates, typically disperse
in time.

The recent surprising discovery [2—4] of nonspreading
wave packets in atoms dressed by a monochromatic field
of either linear (LP) [2] or circular (CP) [3,4] polarization
is of a potentially big importance for future experimental
and theoretical studies in this domain. The nondispersive
character of the motion is not due to a harmoniclike
structure of the Hamiltonian, but rather due to a nonlinear
coupling between the atom and the driving field that locks
the electronic motion to the driving frequency. In the
dressed atom picture [5], a single eigenstate of the full
"dressed" Hamiltonian represents the wave packet [2,4]
explaining immediately why no spreading of the motion
is possible. The wave packet is localized in a stable 1:1
classical resonance island.

This behavior immediately brings into mind the soli-
tons —and indeed such a wave packet may be viewed as
a solitonic solution of the nonlinear but integrable set of
equations describing the motion of eigenvalues as a func-
tion of driving field parameters (the frequency co or am-
plitude F) [6].

The stationary character of the wave packet is, strictly
speaking, approximate only. Firstly, the states in the
presence of the driving field may slowly ionize, although
keeping the same shape (see below). Secondly, other
effects, such as, e.g. , spontaneous emission, may lead to
their eventual spreading and disappearance. It seems at
first glance that ionization should be a primary mechanism
limiting the lifetime of the wave packet, since the field

amplitude required for sufficient coupling between the
atom and the driving field is comparable with that needed
to ionize the atom from Rydberg states. Already first
studies of the lifetime [2,4] revealed that it can be
exceptionally long, reaching 10 Kepler periods for wave
packets built from states of principal quantum number
(around no = 60). Since the atomic states building the
CP wave packets are of large angular momentum (these
are mainly the circular atomic states), their spontaneous
emission lifetime is also extremely large.

The CP wave packet has been studied, up till now,
in the simplified two-dimensional hydrogen atom model,
where the electronic motion has been restricted to the
polarization plane [3,4]. Its existence in a realistic 3D
model has been conjectured only. We report below a
full three-dimensional quantum calculation of the wave
packet for realistic, experimentally accessible values of
parameters. In fact, a whole family of wave packets, with
quite unusual shapes, has been found.

Our second aim has been an accurate determination of
the wave packet lifetime (or rather its inverse —the width)
for both CP and LP cases as a function of the parameters
of the problem. We explicitly show that the wave packets
exist in quite a broad range of parameter values; on the
other hand, their width is a very sensitive function of F,
~, or no. We explain the origin of the width s fluctuations
and point out their similarity to conductance fluctuations
in mesoscopic devices [7].

Our quantum mechanical calculation is based on a di-
agonalization of a large matrix obtained by expressing
the Floquet Hamiltonian of the problem (for both LP
and CP cases) in the Strumian basis [2,8] and using the
complex rotation technique. This yields (quasi)energies,
widths (ionization rate induced by the microwave field),
and eigenfunctions of the Floquet states [9]. The tech-
nique for the LP case has been described before [9]; the
details of the calculations for the CP 3D calculations will
be presented elsewhere [8] and are quite analogous to the
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FIG. l. Visualization of 3D wave-packet states represented as isovalue plots at 30% maximum value in the frame rotating with the
microwave field for no = 60 (co = np, Fo = 0.04442 in atomic units). The cross indicates the position of the nucleus. The cube
edge is 10000 Bohr radii. In the laboratory frame the wave packets rotate around the nucleus without deformation or dispersion.
Top-left —ground state wave packet (0, 0, 0); top-right, bottom-left, and bottom-right plots represent (0, 0, 1), (1,0, 0), and (0, 1, 0)
wave packets, respectively.

where [4]

&eq.p.
1 —4q
2q2/3

(2)

and q is a dimensionless parameter describing the fixed

2D case discussed already [4]. In particular, a slight gen-
eralization to the full 3D Hamiltonian allows us to pre-
dict semiclassically the energy of the wave-packet dressed
eigenstate (in the frame rotating with the field) based on
the harmonic expansion around a stable fixed point

1

Hose Eeq.p. + tu+ (Q+ a+ + 2)
—cu (ala + ~) + ru, (ata, + 2),

point position and its stability [3]. The a (a ) are cre-
ation (annihilation) operators of the modes that entan-
gle position and momentum variables in the polarization
plane (assumed to be the x-y plane), while the harmonic
binding in z direction is described by a„a,operators. In
3D, the frequencies cu are the same as in the simplified
2D case [4], while ~, = co~q. Note the untypical mi-
nus sign for the cu term in Eq. (1) resulting from the I,
term in the original Hamiltonian. This does not affect the
stability of the fixed point; the Hamiltonian is a binding
one. Let us denote by (n+, n, , n, ) the wave packet cor-
responding to n; excitation of the ith mode. The "ground
state" wave packet will be denoted then by (0, 0, 0), ex-
cited "2D" wave packets will correspond to (n+, n, 0),



VOLUME 75, NUMBER 22 PH YS ICAL REVIEW LETTERS 27 NovEMBvR 1995

while n, ~ 0 will correspond to excitation in the direc-
tion perpendicular to the polarization plane.

The semiclassical prediction, Eq. (2), is essential for
our diagonalizations since we can determine only a small
number of eigenvalues around the predicted energy from
matrices reaching a rank of 5 X 10~ using the Lanczos
algorithm. The method yields the corresponding eigen-
vectors (and wave functions [9]) at no additional cost.
The exemplary wave packets are presented in Fig. 1 as
3D isovalue plots for squared modulus of the wave func-
tion. The top-left picture represents the (0, 0, 0) wave
packet and is an approximate Gaussian in radial, azimutal
(in x-y plane), and z direction. It is a superposition of
mainly circular states ~n, l = n —1, m = I) with n cen-
tered around no = co " (for ceno = 1 the Kepler fre-3

quency matches the driving microwave frequency leading
to a 1:1 resonance). The frequency chosen for calcula-
tion yields no = 60. The top-right picture represents the
wave packet (0, 0, 1) with a single excitation along the
z axis —the genuine 3D wave packet. The electron be-
comes "split in half' since the wave function vanishes at
z = 0. Bottom left [bottom right] plots represent the ra-
dially, (1,0, 0) [azimutally, (0, 1, 0)] excited wave packets
taking the shape of deformed tori. They correspond to
similar wave packets in 2D calculations presented by us
before [4].

All the wave packets shown in Fig. 1 have long life-
times exceeding 10 Kepler periods. Experimentally, they
may be prepared by a fast microwave switching technique
starting from atomic circular states as described in detail
in [4] for the ground state wave packet, possibly combined
with resonant transitions induced by an additional field
to transfer the population among different (n+, n, n, )
dressed states. We checked that the estimations for the
switching time given in [4] for the 2D model are still
valid for the real 3D atoms. Thus, the way is open for an
experimental production of these wave packets. The in-
teresting question, which remains to be answered, is how
many different "wave packet" (i.e., strongly localized in a
dynamical potential surrounding the 1:1 fixed point) states
can be formed. We leave this problem for future consid-
eration concentrating below on the width properties.

The range of microwave parameters allowing for for-
mation of the wave packet in CP microwaves is related
to the stability of the relevant fixed point (see [3] for de-
tails). From an experimental point of view it is of impor-
tance to know the dependence of the wave-packet energy
and its width on the tunable parameters such as ~ and F.
The former is provided quite accurately by Eq. (1), the
behavior of the width V is represented in Fig. 2 as a func-
tion of the microwave frequency cu or rather its "scaled"
representation coo = ~no. Note the strong fluctuations,
the widths vary by 2 orders of magnitude under subtle
changes of coo in a quite erratic manner. As shown in the
same figure, the behavior is qualitatively similar for both
2D and full 3D hydrogen atom model wave packets as
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FIG. 2. Width of the "ground state" wave packet as a func-
tion of scaled frequency ~o for scaled microwave amplitude
Fo = 0.04442. Scaling performed with respect to no cor-
responding to the center of the wave packet. Top three-
dimensional hydrogen atom in a circularly pojarized microwave
field (no = 40); middle —same for a two-dimensional model
(no = 70); bottom —one-dimensional hydrogen atom in a lin-
early polarized microwave field (no = 30). The existence of
similar strong fluctuations shows the general character of these
fluctuations induced by "chaos assisted tunneling" from nonlin-
ear classical resonance.

well as for the corresponding wave packet obtained for a
one-dimensional hydrogen atom illuminated by a linearly
polarized microwave field —being thus a general phenom-
enon. The presence of strong fluctuations is quite unex-
pected, because the wave packets are strongly localized
in a stable classical resonance island, thus their widths
may be thought of as dominated by tunneling to the sur-
rounding chaotic sea, a phenomenon insensitive to small
changes of ~o.

Similar fluctuations may be observed by changing the
microwave amplitude F for a fixed frequency and no (not
shown) as well as by fixing both "classical parameters"
ceo and the scaled amplitude Fo = Fn and varying the
principal quantum number (i.e. , the effective size of 6)
as shown in Fig. 3. The presence of the latter fluctuations
proves the quantum origin of the fluctuations. An increase
of no (for no suNciently large) leads to a decrease of the

average width in agreement with the tunneling picture.
To understand the fluctuations, one has to consider the
details of tunneling out of the stable island. The electron
tunnels not directly to the continuum but rather via other
higher excited states (or classically to the chaotic sea
surrounding the island). Many quantum paths leak to the
continuum, and the interference of them leads to a final
value of the widths. The paths themselves are sensitive
only to classical parameters ~o, F, but the phases of
their contributions depend strongly on the effective value
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FIG. 3. Same as Fig. 2, but for fixed both ~o = l and Fo =
0.04442 and varying the principal quantum number no., i.e., the
effective size of A, . The strong fluctuations in strictly similar
classical situations prove the quantum origin of the fluctuations.

of 6, i.e., on no. '.n the chaotic sea, there are plenty
of different uncorrelated paths with complicated shapes.
The net effect of their interferencing contributions will be
"quasirandom" fluctuations of the total ionization rate. In
fact the tunneling process is "chaos assisted" as analyzed
in detail by Tomsovic and Ullmo [10]. They discussed
the tunneling between stable islands; here we observe
such a chaos assisted tunneling from stable island to the
scattering regime.

The fluctuations due to chaos assisted tunneling re-
semble the so-called conductance fluctuations observed
in mesoscopic systems [7] resulting in a similar man-
ner from quantum interference of different paths of the
electron through the finite size sample. Thus, the fluc-
tuations observed can be considered as an atomic analog
of the conductance fluctuations (for other manifestation of
such fluctuations in the ionization process, see [2,11,12]).
However, the situation is here even simpler: The fluc-
tuations are due to details of the transport from a single
localized eigenstate of the system to the atomic contin-
uum, not to the localization properties of the initial state.

The transport through the chaotic sea is clearly vis-
ible in the spectral picture. By a detailed analysis of
the motion of resonances as a function of the parame-
ters (ai, F), we have confirmed that the microscopic ori-
gin of rapid changes of widths may be traced back to
avoided crossings (in the complex-energy —width plane)
of the wave packets states with other Floquet states [2,12].
These other states (corresponding to very highly excited
states of n = 200) may become quasidegenerate with the
wave packet states due to the dressing by the microwave
held. They have of course completely different localiza-

tion properties and, therefore, their quasienergies change
with parameters, e.g. , co, differently than the energy of
the wave packet states —that explains the multitude of
avoided crossings observed on level motion plots. A more
detailed study of this phenomenon will be presented else-
where [13].

To summarize, we have shown that recently discovered
nondispersing wave packets formed by placing H atom in
a microwave field of either linear or circular polarization
are extremely stable against the ionization over a broad
range of parameters. Their width (lifetime) exhibits
fine scale fluctuations —an atomic analog of conductance
fluctuations. The physical mechanism under these fluctu-
ations is the chaos assisted tunneling. We presented first
a calculation of CP wave packets for a realistic model —a
fully 30 hydrogen atom finding also the "excited state"
wave packets exemplified in Fig. 1.
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